
UNIVERSITY OF VIRGINIA

CS 6501 LEARNING IN ROBOTICS

SPRING 2024

HOMEWORK 0 - NOT GRADED

DUE: 01/25 THU 11.59 PM

Instructions
Read the following instructions carefully before beginning to work on the home-

work.

• You will submit solutions typeset in LATEX on Gradescope (strongly en-
couraged). You can use hw_template.tex on Collab in the Resources »
Homeworks folder to do so. If your handwriting is unambiguously legible,
you can submit PDF scans/tablet-created PDFs.

• Please start a new problem on a fresh page and mark all the pages corre-
sponding to each problem. Failure to do so may result in your work not
graded completely.

• Clearly indicate the name and UVA email ID of all your collaborators on
your submitted solutions.

• For each problem in the homework, you should mention the total amount of
time you spent on it.

• You can be informal while typesetting the solutions, e.g., if you want to draw
a picture feel free to draw it on paper clearly, click a picture and include it
in your solution. Do not spend undue time on typesetting solutions.

• You will see an entry of the form “HW 0 PDF” where you will upload the
PDF of your solutions. You will also see entries like “HW 0 Problem 1
Code” where you will upload your solution for the respective problems. For
each programming problem, you should create a fresh Python file. This
file should contain all the code to reproduce the results of the problem and
you will upload the .py file to Gradescope. If we have installed Autograder
for a particular problem, you will use the Autograder. Name your file to be
the same filename as stated in the respective problem statement.

• You should include all the relevant plots in the PDF, without doing so
you will not get full credit. You can, for instance, export your Jupyter

1

notebook as a PDF (you can also use text cells to write your solutions) and
export the same notebook as a Python file to upload your code.

• Your PDF solutions should be completely self-contained. We will run
the Python file to check if your solution reproduces the results in the
PDF.

Credit The points for the problems add up to 120. You only need to solve for 100
points to get full credit, i.e., your final score will be min(your total points, 100).

2

Problem 1 (15 points). Suppose X ∼ N(µ1, σ
2
1I) and Y ∼ N(µ2, σ

2
2I) are1

two independent Gaussian random variables; µ1, µ2 ∈ Rn are the means and2

σ1I, σ2I ∈ Rn×n are diagonal covariance matrices. Compute the distribution of3

X + Y .4

Problem 2 (10 points). Let us imagine a robot that would like to go into a room.5

The door to the room has two possible states: open and closed. We will represent6

these states using a discrete-valued random variable X7

X =

{
0 if door is open
1 if door is closed.

We will assume that initially we have no knowledge of the door state, that is,8

P (X = 1) = P (X = 0) = 0.5. The robot has a sensor to detect the state of the9

door which we will model using another discrete-valued random variable Y ; the10

reading Y = 1 indicates that the door is closed and vice-versa. We can think of the11

value of Y as an observation for the state of the door, i.e., the value of X . However,12

sensors are often erroneous and this observation is not always correct. We have13

P(Y = 1 | X = 1) = 0.8

P(Y = 1 | X = 0) = 0.2.

Use the Bayes rule to compute the probability that is the door is open when the14

sensor detects that the door is open. How does your answer change if you take15

multiple measurements?16

Problem 3 (15 points). This problem is an exercise in linear dynamical systems.17

Given a state x(t) ∈ Rn and a control input u(t) ∈ Rp a linear dynamical systems18

evolves using the equation19

x(t+ 1) = Ax(t) +Bu(t) + ξ(t)

where x(t+1) is the state of the system at the next time-step, the matrix A ∈ Rn×n20

is the state-evolution matrix and the matrix B ∈ Rn×p is the control matrix. The21

variable Rn ∋ ξ(t) ∼ N(0,Σ) is the unmodeled part of the dynamics which we22

can think of as zero-mean Gaussian noise with a symmetric covariance Σ ∈ Rn×n.23

Suppose x(0) ∼ N(0, I) and we pick a certain control input u(0) argue why the24

probability distribution of x(1) is also a Gaussian. Compute the mean and variance25

of x(1). It is known that if the controller u(t) stabilizes the system (what does this26

mean?) and all eigenvalues of A are smaller than 1 in magnitude, the variance of27

x(t) reaches a non-degenerate steady-state as t → ∞, compute this variance. Can28

you argue as to why the variance of x(1) or x(t) does not seem to depend on u(t)?29

Problem 4 (30 points). This problem will take you through the basics of using a30

Python package manager named Miniconda, Google Colab and installing and using31

a deep learning library named PyTorch. There are a number of ways to install these32

on your own system and you are free to use whatever setup you prefer. However,33

we reccommend, installation using the conda package manager.34

3

1. If you don’t have a working Python programming setup on your laptop yet,35

follow the instructions at https://docs.conda.io/en/latest/miniconda.html to36

install and run Miniconda. Familarize yourself with Jupyter (or IPython)37

using https://realpython.com/jupyter-notebook-introduction. Run conda38

install numpy pandas matplotlib pytorch jupyter spyder.39

Now open a Python terminal (python3) and verify that40
41

import torch42

import numpy as np43

import matplotlib.pyplot as plt4445

executes without issue. The spyder IDE will also now be installed if you46

prefer as well as jupyter. We reccommend spyder.47

2. The next bit of infrastructure we would like to introduce is Google Colab48

(https://colab.research.google.com). Google Colab is a free to use tool49

which gives access to two CPU cores, about 12 GB RAM and one (very50

good) GPU for 12 contiguous hours, through a Jupyter notebook. You51

should be able to complete most of the homeworks on your laptop with52

Anaconda above. You can certainly use Colab if you wish.53

3. Use the Github repository at https://github.com/jakevdp/PythonDataScienceHandbook54

to brush up on Numpy (02.02), Pandas (03.00) and plotting using Matplotlib55

(04.00).56

4. PyTorch is already installed on Google Colab, and it should have been57

installed through conda in step (1). PyTorch is very similar to Numpy in its58

functionality except that it is tailored to deep neural networks. You can fol-59

low the tutorial at https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html60

to learn more. We will provide more material on how to use PyTorch when61

we get to the Reinforcement Learning part of this course.62

Problem 5 (20 points). Jarvis likes to bet on coin tosses; he bets a dollar each63

time that the coin will come up heads. Jarvis begins with m dollars and quits if he64

either loses all the money or ends up with n dollars. The coin comes up heads with65

probability p < 1/2. Let q = 1− p and Bk be the event that Jarvis is betting on the66

kth toss, and let Xk be the money left after kth coin toss. If X0 = m,67

(i) what is the probability the Jarvis loses all the money?68

(ii) what is the expected number of bets?69

Problem 6 (30 points). This problem will teach you how to use numpy/pytorch/-70

matplotlib efficiently. This problem can be done on your laptop.71

1. Programming Problem 1: A key motivation for libraries like numpy and72

pytorch is that they have highly optimized functions for vectorization. Be-73

cause python is an interpreted language, for loops are extremely slow. If74

a for loop is independent—that is, the iterations can be executed in any75

order—then often the loop can be vectorized to run all iterations simulata-76

neously.77

4

https://docs.conda.io/en/latest/miniconda.html
https://realpython.com/jupyter-notebook-introduction
https://colab.research.google.com
https://github.com/jakevdp/PythonDataScienceHandbook
https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html

Consider an affine system x(t+ 1) = Ax(t) + b, where A ∈ Rn×n, b ∈78

Rn, and x ∈ Rn. It is often desirable to simulate a system for many different79

initial conditions, for instance when training RL models or in a particle80

filter, as we will discuss later. Complete the function sim_systems in81

hw0_solution.py to find x(t + 1) for an arbitrary number of initial82

conditions. Pay attention to the structure and dimensionality of inputs and83

outputs.84

Hint: You may find a discussion of broadcasting in python to be helpful.85

2. Programming Problem 2: Complete the function compute_derivative86

in hw0_solution.py to take the partial derivatives of N-dimensional87

functions along each dimension. Recall that for f(x1, x2,), the partials88

are approximated for the discrete case by89

∂f

∂xi

∣∣∣
(c1,c2,...)

≈ f(c1, c2, ..., ci + ϵ, ...)− f(c1, c2, ..., ci, ...)

ϵ

Plot the derivative of a 1D function, and the x and y partials for a 2D90

function (use plt.imshow) of your choice. Pick functions that demon-91

strate the functionality of your implementation. Include these figures with92

your written answers.93

3. Submit hw0_solution.py to the autograder. Upload hw0_solution.py94

and all supporting files to gradescope under Homework 0 - Code. The95

autograder may take several minutes, after which you will receive your96

score. You may submit multiple times, but we strongly encourage you to97

come up with your own local test cases for debugging.98

Some notes about the autograder: The autograder will run your code99

through a number of test cases. There are 2 types of test cases: binary100

ones, and those providing partial credit. For binary cases, you will either101

recieve all or none of the points for that case. For partial credit, there are 2102

thresholds at 100% and 60%. The autograder will tell you these thresholds103

and your score. If you score worse than the 60% threshold, you will receive104

no credit for that test case. If you score better than the 100% threshold, you105

will receive full credit. If you score in between, your credit will be scaled106

linearly betweeen 60% and 100%.107

For instance autograder feedback could look like the following:108

Problem 1: Execution Time (sec) (4.33/5)109

score: 2110

100%: 0.5, 60%: 5.111

Here, the student’s test took 2 sec. This is 67% of the way to the 100%112

threshold, so the final score is 4.33/5. This system is intended to reward113

code which works reasonably well, but also reward and encourage you to114

5

get things to work as well as they can (we promise, it’s possible to get 100%115

on all test cases).116

6

