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Everything that moves will go autonomous
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Cars Trucks Carts Drones
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Autonomous
Systems

Safe

Secure

Connected

Self
Learning

Trusted

Resilient
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1.35 million deaths worldwide due to vehicle crashes

94% of crashes involve human choice or error in the US.
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3 million
Americans age 40 and older are blind or have low vision

79%
of seniors age 65 and older living in car-dependent communities

42 hours
wasted in traffic each year per person
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Localization and Mapping

Scene Understanding

Trajectory Planning and Control

Human Interaction

Where am I ?

Where/who/what/why of 
everyone/everything else ?

Where should I go next ? 
How do I steer and accelerate ?

How do I convey my intent to the 
passenger and everyone else ?
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Detailed three-dimensional maps that highlight 
information such as road profiles, curbs and sidewalks, 
lane markers, crosswalks, traffic lights, stop signs, and 
other road features.

Where 
am I?
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What's 
around me?

Scan constantly for objects around the vehicle—
pedestrians, cyclists, vehicles, road work, obstructions—
and continuously read traffic controls, from traffic light 
color and railroad crossing gates to temporary stop signs.
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What will 
happen next?

Predict the movements of everything around you based 
on their speed and trajectory
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What should I 
do?

Determine the exact trajectory, speed, lane, and steering 
maneuvers needed to progress along the route safely
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HD Maps: Localization
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Localization: Scan Matching 
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Training the Neural Network

Left camera

Center camera

Right camera

Random 
shift and 
rotation

Adjust for 
shift and 
rotation

CNN -
Back propagation
weight adjustment

Recorded 
steering 

wheel angle

Network 
computed 
steering 
command

Desired steering command

Error

End-to-End Driving: PilotNET



Driving
With a single front-facing camera

Center camera CNN

Network 
computed 
steering 
command Drive-by-wire 

interface
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Machine intelligence is largely about training data.
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Image courtesy: Cognata

When’s a pedestrian not a pedestrian? When it’s a decal.
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One car ? or Multiple cars ?
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There is a bus right next to you!!
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How can we ensure that an autonomous 
vehicle drives safety upon encountering an 

unusual traffic situation ?
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How can CNNs help us drive ?
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Autonomous Driving: End-to-End
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Autonomous Driving: End-to-End
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THE BASIC IDEA
Learn from human drivers

Training 
data -

Human actuator commands

Record data from lots of humans
driving their cars:
Ø Sensor data
Ø Actuator data

Sensor
data

Error (training) signal

CNN actuator
commands

CNN
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EARLY EXAMPLES

Neural
network

Pixels
Steering

commands

Of end-to-end learning

ALVINN, CMU, late 80es
(Pomerleau et Al.)

Lane following with a small 2-layer fully 
connected network and low-resolution 
video input

30x32 pixel

DAVE, Net-Scale/NYU, 2004
(LeCun et Al.)

Off-road obstacle avoidance using a 
convolutional network (ConvNet)

149x48 pixel
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TRAINING EXAMPLES

225K images

Label: turn right Label: go straight

Label: turn right Label: turn left
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TRADITIONAL DECOMPOSITION
Necessary approach when data and compute power are limited

Hand-designed
feature
extractor

Classifiers
Semantic 

abstraction 
(cost map)

Path
planner Controller

Actuator
commands

Trained from
data

Domain knowledge
(from human experts)

Hand-designed

Learned

Camera

Deep learning –
feature extractor and
classifier trained
simultaneously
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EXAMPLE: ROAD FOLLOWING

Good quality lane markers, good 
driving conditions

Traditional lane detection-based 
systems expected to work well

Poor quality lane markers

Lane detection-based systems struggle

End-to-end learning empowers the 
network to use additional cues
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LEARNED ROAD FOLLOWING (PILOTNET)

Learned feature
extractor
(ConvNet)

Learned
control

Actuator
commands

Domain knowledge
• Recover from off-center 

and off-orientation
• Prevent training on too 

much straight road

Hand-designed

LearnedTraining 
data

Single 
front-facing 

camera

Highway, local, residential – with or without lane markings

Domain knowledge
• Network architecture

Examples
• Data collected from 

human drivers

Both blocks trained 
simultaneously

No explicit object detection 
nor path planning

→ Maps pixels directly to
steering
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TRAINING THE NEURAL NETWORK

Left camera

Center camera

Right camera

Random 
shift and 
rotation

Adjust for 
shift and 
rotation

CNN -
Back propagation
weight adjustment

Recorded 
steering 

wheel angle

Network 
computed 
steering 
command

Desired steering command

Error
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DRIVING
With a single front-facing camera

Center camera CNN

Network 
computed 
steering 
command Drive-by-wire 

interface
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VISUALIZATION
What the network pays 
attention to


