
Model Checking
what is it? And what is it good for? 
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So far..

• We modeled the heart (and pacemaker) as a timed automaton with 
clocks, resets and actions (messages) = timed automaton
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So far..

• We modeled the heart (and pacemaker) as a timed automaton with 
clocks, resets and actions (messages) = timed automaton
• The modeling effort allows us to better understand the heart, ask the 

right questions, and focus on the important aspects for the task at 
hand.
• Importantly, it allows us to automatically and exhaustively check 

whether the heart+pacemaker satisfies some desirable properties.
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Automatically and exhaustively

• Importantly, it allows us to automatically and exhaustively check 
whether the heart+pacemaker satisfies some desirable properties.
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Automatically and exhaustively

• Importantly, it allows us to automatically and exhaustively check 
whether the heart+pacemaker satisfies some desirable properties.
• Automatically: through a computer program
• You provide a proof of a mathematical theorem…
• ...vs. the computer provides the proof

• Exhaustively: 
• Testing: simulate the system N times. If testing returns “No bug found”, there 

could still be a bug (e.g., revealed if you do another N simulations)
• Exhaustive verification: if the model checker returns “Model is correct”, then 

this answer is definitive – there is indeed no specification violation. All 
executions of the model have been exhaustively checked.
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Next few lectures..

• We explore the basic ideas behind model checking: an automatic and 
exhaustive way of checking whether a system model satisfies some 
desirable property. 
• Our timed automata are more complex than the models we study in 

this lecture - but what we study forms the basis for understanding all 
model checking algorithms out there.

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 7



Model Checking
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Model Checking

• See ltlmc.ppt

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 9



Flavio Lerda and Madhur Behl

1

LTL Model Checking

(LTL) Model Checking

Flavio Lerda
with edits by Madhur Behl
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LTL Model Checking

Model checking: ingredients

• A mathematical model of the system to be 
verified

• A specification of correct behavior
• Seek to answer: does every infinite 

behavior of the system satisfy the 
specification?
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LTL Model Checking

Ingredients: Heart + pacemaker

• A mathematical model of the system: 
timed automata model of composition of 
heart + pacemaker

• A specification of correct behavior: e.g., 
Always, an Asense is followed by another 
Asense in at most 500ms

• Seek to answer: does every infinite 
behavior of the system satisfy the 
specification?
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LTL Model Checking

Model checking: the question

• Can we answer the question definitively? 
I.e. if the answer is Yes, this is a guarantee 
that the system model will never produce 
incorrect behavior. 

• Contrast with testing
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LTL Model Checking

This lecture

• LTL model checking:
– The model is a transition system
– The correct behavior is an LTL formula

• Objective: understand fundamental 
concepts and uses of model checking
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LTL Model Checking

Atomic propositions

• A system model has variables, e.g., 
voltage. 

• An atomic proposition p is a statement 
about the state variable, e.g. p := “voltage 
> 5” or “-4 <= voltage <= 4”.

• In what follows, AP will denote a set of 
atomic propositions.



Flavio Lerda and Madhur Behl

7

LTL Model Checking

System model: a transition 
system

• A Transition System (TS) is a tuple áS, I, A, 
d, AP, Lñ
– S is a finite set of states 
– I Í S is a set of initial states 
– A is a finite set of inputs (or `actions’)
– d Í S ´ A ´ S is a transition relation: s àa s’
– AP is a set of atomic propositions on S
– L: S à 2AP is a state labeling function. 

Intuitively, L(s) is the set of atomic 
propositions satisfied by state s.
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LTL Model Checking
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LTL Model Checking



Flavio Lerda and Madhur Behl

10

LTL Model Checking

Example transition system

S0 S1 S2

Identify the elements áS, I, A, d, AP, Lñ of this transition system

a

b

b

a

b
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LTL Model Checking

Example transition system

Labeling function: L(s0) = p, L(s1) = {p,q}, L(s2) = q

b

S0 /p S1 /p,q S2 /q
a b

a

b
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LTL Model Checking

Example transition system

A path is an (infinite) sequence of states in the TS.
E.g. σ = S0S1S2S2S2S2… is a path in this TS

A trace is the corresponding sequence of labels.
E.g. p{p,q}qqqq... Is the trace corresponding to σ

A word is a sequence of inputs, e.g. abbbbbb… induces σ

b

S0 /p S1 /p,q S2 /q
a b

a

b
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LTL Model Checking

Example transition system

Word abbbbb… gives path s1=S0S1S2S2S2S2…with trace p{p,q}q+

Word ababab… gives path s3=S0S1S2S1S2S1…with trace p({p,q}q)*

Word ababbb… gives path s4=S0S1S2S1* with trace p{p,q}p{p,q}*

S0 /p S1 /p,q S2 /q
a b

a

b

b

Word abbbbb… gives path s2=S0S1S1S1S1S1…with trace p{p,q}+
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LTL Model Checking

Example transition system

Word abbbbb… gives path s1=S0S1S2S2S2S2…with trace pqqq... 

Word ababab… gives path s3=S0S1S2S1S2S1…with trace pqqq…

Word ababbb… gives path s4=S0S1S2S1.. with trace pqqq…

S0 /p S1 /q S2 /q
a b

a

b

b

Word abbbbb… gives path s2=S0S1S1S1S1S1…with trace pqqq...
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LTL Model Checking

Model checking

• A mathematical model of the system to be 
verified

• A specification of correct behavior
• Seek to answer: does every infinite 

behavior of the system satisfy the 
specification?
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LTL Model Checking

Example specifications

m holds true eventually
m is always followed by q
p holds continuously before f holds

S0 /p S1 /p,q S2 /m
a b

a

b

b

S3 /f

c
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LTL Model Checking

Logic

• Rather than focus on specific properties, 
like those described earlier, and 
developing custom property-specific 
checking algorithms…

• Let’s define a language for describing all
(most) properties of interest for systems 
modeled as transition systems…

• ...then develop an algorithm for checking 
any property expressible in this language.
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LTL Model Checking

Linear Temporal Logic (LTL)
• LTL is a logic (a `language’) for describing 

properties of transition systems
• pk = an atomic proposition 
• For example, if x is a voltage signal

– p1 := x < 70mV
– p2 := t > 500ms
– p3 := ln(x) > -0.5
– p4 := eax + cos(x) > 45 

b
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LTL Model Checking

Linear Temporal Logic (LTL)

• LTL is boolean logic, augmented with two 
temporal operators: X (next) and U (until)

• An LTL formula is defined inductively as 
follows:
– Every atomic proposition p is a formula
– If j1 and j2 are LTL formulas, then ~j1, j1 ⋁
j2, j1 ⋀ j2 are also LTL formulas

– X j1 is a formula
– j1 U j2 is a formula
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LTL Model Checking

Boolean Operators

NOT

P ¬

True
False
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LTL Model Checking

Boolean Operators

NOT

P ¬

True False
False True
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LTL Model Checking

Boolean Operators

AND

P Q P Ù Q
True True
True False
False True
False False
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LTL Model Checking

Boolean Operators

AND

P Q P Ù Q
True True True
True False False
False True False
False False False
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LTL Model Checking

Boolean Operators

OR

P Q P Ú Q
True True
True False
False True
False False
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LTL Model Checking

Boolean Operators

OR

P Q P Ú Q
True True True
True False True
False True True
False False False
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LTL Model Checking

Boolean Operators

IMPLIES

P Q P ® Q
True True
True False
False True
False False
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LTL Model Checking

Boolean Operators

IMPLIES

P Q P ® Q
True True True
True False False
False True True
False False True

So p → q follows the following reasoning:

1.a True premise implies a True conclusion, therefore T → T is T;
2.a True premise cannot imply a False conclusion, therefore T → F is F; and
3.you can conclude anything from a false assumption, so F → anything is T.
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LTL Model Checking

Linear Temporal Logic (LTL)

• LTL is boolean logic, augmented with two 
temporal operators: X (next) and U (until)

• An LTL formula is defined inductively as 
follows:
– Every atomic proposition p is a formula
– If j1 and j2 are LTL formulas, then ~j1, 
– j1 ⋁ j2, j1 ⋀ j2 are also LTL formulas
– X j1 is a formula
– j1 U j2 is a formula
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LTL Model Checking

LTL semantics intuition (slide courtesy of G. Fainekos at ASU)

p– p now

p p p p pp

* * p * **

p * * * **

p p q * *p

* p * q **

p * * * **
time

time

G p- always p

F p– eventually p

X p– next state p

p U q – p until q

p B q – p before q
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LTL Model Checking

time

time

time
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LTL Model Checking

time

time

time

time

F p1
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LTL Model Checking
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LTL Model Checking

time

time

Eventually

Globally

Or Implies

Derived formulae
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LTL Model Checking

Linear Temporal Logic (LTL)

• LTL is boolean logic, augmented with two 
temporal operators: X (next) and U (until)

• An LTL formula is defined inductively as 
follows:
– Every atomic proposition p is a formula
– If j1 and j2 are LTL formulas, then ~j1, 
– j1 ⋁ j2, j1 ⋀ j2 are also LTL formulas
– X j1 is a formula
– j1 U j2 is a formula
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LTL Model Checking
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LTL Model Checking

Examples of LTL formulas
• Invariant (something always holds) :

– G(~p)   (~ is negation)
• Response

– G (p à F q)
• Fairness

– (G F p) à (G F q)
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LTL Model Checking

Examples of LTL formulas
• Invariant (something always holds) :

– G(~p)   (~ is negation)
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LTL Model Checking

Examples of LTL formulas
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LTL Model Checking

Examples of LTL formulas
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LTL Model Checking

Examples of LTL formulas
An LTL formula is defined inductively as follows:

– Every atomic proposition p is a formula
– If j1 and j2 are LTL formulas, then ~j1, j1 ⋁ j2,
– j1 ⋀ j2 are also LTL formulas
– X j1 is a formula
– j1 U j2 is a formula

•Which of these are valid LTL formulas?
– ~~ j1

– ~(j1 UU j2)
– G(~ j1 ⋁ ~j1) STUDENT
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LTL Model Checking

Example specifications in LTL

Express these in LTL: 
m holds true eventually
Always, m holds true eventually
m is always followed by q
p holds continuously before f holds

S0 /p S1 /p,q S2 /m
a b

a

b

b

S3 /f

c

STUDENT
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LTL Model Checking

Example specifications in LTL

Express these in LTL:
m holds true eventually: Fm
Always, m holds true eventually : GFm 
m is always followed by q : G(m à X q)
p holds true continuously before f holds true: p U f

S0 /p S1 /p,q S2 /m
a b

a

b

b

S3 /f

c
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LTL Model Checking

Example specifications in LTL

Does the TS satisfy these specifications:
m holds true eventually: Fm 
Always, m holds true eventually : GFm 
m is always followed by q : G(m à X q)
p holds true continuously before f holds true: p U f

S0 /p S1 /p,q S2 /m
a b

a

b

b

S3 /f

c

STUDENT
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LTL Model Checking

Does the TS satisfy these 
specifications?

Does the TS satisfy these specifications:
m holds true eventually: Fm : No
Always, m holds true eventually : GFm : No
m is always followed by q : G(m à X q): No
p holds continuously before f holds: p U f: No

S0 /p S1 /p,q S2 /m
a b

a

b

b

S3 /f

c
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LTL Model Checking

Announcements

• No Lectures next week ! (Conference travel)

• Assignment 5 deadline has been extended from Tuesday, Nov 
6 to Thursday, Nov 8m 11:59pm.

• A Simulink/Stateflow walkthrough video will be posted in lieu 
of the lectures next week. It will help with assignment 5. 

• Assignment 6 on transition systems and LTL will be out next 
week on Thursday, Nov 8. It is due in 1 week – on Thursday, 
Nov 15, at 2:00pm (before the lecture).
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LTL Model Checking

LTL to Buchi automata

• We have a system model as a transition 
system (TS), aka an automaton.

• And a specification as an LTL formula
• Recall design principle: try to stick to the 

same formalism.
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LTL Model Checking

LTL to Buchi automata

• We have a system model as a transition 
system (TS), aka an automaton.

• And a specification as an LTL formula
• Recall design principle: try to stick to the 

same formalism.
• Every LTL formula has a corresponding 

Buchi automaton that accepts all and only 
the infinite state traces that satisfy the 
formula [Vardi and Wolper]
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LTL Model Checking

Büchi Automaton
• Automaton which accepts infinite paths
• A Büchi automaton is tuple áS, I, A, d, Fñ

– S is a finite set of states (like a TS)
– I Í S is a set of initial states (like a TS)
– A is a finite alphabet (like a TS)
– d Í S ´ A ´ S is a transition relation (like a TS)
– F Í S is a set of accepting states

• An infinite sequence of states (a path) is 
accepted iff it contains accepting states 
(from F) infinitely often
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LTL Model Checking

Identify Büchi Automaton 
components

• A Büchi automaton is tuple áS, I, A, d, Fñ
– S is a finite set of states (like a TS)
– I Í S is a set of initial states (like a TS)
– A is a finite alphabet (like a TS)
– d Í S ´ A ´ S is a transition relation (like a TS)
– F Í S is a set of accepting states

S0 S1 S2

p

q

q

p

q

STUDENT
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LTL Model Checking

Example: accepted paths

s1=S0S1S2S2S2S2…

s2=S0S1S2S1S2S1…

s3=S0S1S2S1S1S1…

ACCEPTED

ACCEPTED

REJECTED

S0 S1 S2

p

q

q

p

q
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LTL Model Checking

Example: accepted words

Automaton B = áS, I, A, d, Fñ

Word = infinite sequence of letters from alphabet A.
E.g. pq+ and p(q*qp)* are both words.

What words are accepted by this automaton?

S0 S1 S2

p

q

q

p

q

STUDENT
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LTL Model Checking

Example

Word = infinite sequence of letters from alphabet A .

What words are accepted by this automaton B?
L(B) = pq+(pq+)*

L(B) is called the language of B. It is the set of words for
which there exists an accepting run of the automaton.

S0 S1 S2

p

q

q

p

q
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LTL Model Checking

Non-determinism
• Büchi automata are non-deterministic:

– The next state is not uniquely defined
– That is, the same input letter could lead to two 

different states
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LTL Model Checking

Example: Non-determinism

Example of non-determinism?

S0 S1 S2

p

q

q

p

q
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LTL Model Checking

Example: Non-determinism

Non-determinism: (s1,q,s2) and (s1,q, s1) are in the 
transition relation d

S0 S1 S2

p

q

q

p

q
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LTL Model Checking

LTL to Buchi

• Every LTL formula has a corresponding 
Buchi automaton that accepts all and only 
the infinite state traces that satisfy the 
formula

• Example: φ = G F p



Flavio Lerda and Madhur Behl

57

LTL Model Checking

LTL to Buchi

• Every LTL formula has a corresponding 
Buchi automaton that accepts all and only 
the infinite state traces that satisfy the 
formula 

• Example: φ = G F p

S0 S1

p

p

~p

true

Bφ
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LTL Model Checking

Checkpoint

• Where are we in the story?
– What are we trying to do?
– What are the pieces we assembled so far?
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LTL Model Checking

LTL Model checking
• TS M: input set A = {a,b,c} and AP={p,q}
• Formula φ = G F p 
• Traces of M = infinite label sequences (e.g. 
s1=({q},{p},{p,q})* and s2={q}*)

q p
b

c

c

a

p,q

b

M

S0 S1

p

p

~p

Bφ, φ = GF p

true
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LTL Model Checking

LTL Model checking

• TS M: input set A = {a,b,c} and AP={p,q}
• Not every trace of M satisfies formula. Give a 

counter-example

q p
b

c

c

a

p,q

b

M

STUDENT

S0 S1

p

p

~p

Bφ, φ = GF p

true
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LTL Model Checking

LTL Model checking

• TS M: input set A = {a,b,c} and AP={p,q}
• Not every trace of M satisfies formula. 

Counter-examples: s2={q}* and s3=qp{p,q}q*

q p
b

c

c

a

p,q

b

M

S0 S1

p

p

~p

Bφ, φ = GF p

true
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LTL Model Checking

LTL Model checking

• Bφ accepts exactly those traces that 
satisfy φ 

• B~φ accepts exactly those traces that 
falsify (i.e., violate) φ

• Example (cont’d) :
~φ = ~(GFp)=F~(Fp)=F(G~p)

• What is B~φ ?
STUDENT
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LTL Model Checking

LTL Model checking

• Bφ accepts exactly those traces that 
satisfy φ 

• B~φ accepts exactly those traces that 
falsify φ

• ~φ = ~(GFp)=F~(Fp)=F(G~p)

S0 S1

~p

~ptrue

B~φ
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LTL Model Checking

LTL Model checking

• If TS generates a trace that is accepted by 
B~φ , this means, by construction, that the 
trace violates φ, and so that the TS is 
incorrect (relative to φ)

S0 S1

~p

~ptrue

B~φ
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LTL Model Checking

LTL Model Checking

• A trace of TS that is accepted by B~φ violates φ: TS is incorrect
• Imagine running the two automata in parallel: they both make 

transitions at the same time. If M transitions f à f’ (f,f’ in AP), B~φ
transitions along the edges labeled by f’. B~φ observes M’s operation.

• If every/no? such parallel execution is accepting in B~φ, then M |= φ 

q p
b

c

c

a

p,q

b

B~φ
M

S0 S1

~p

~ptrueSTUDENT
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LTL Model Checking

LTL Model Checking
• A trace of TS that is accepted by B~φ violates φ: TS is incorrect
• Imagine running the two automata in parallel: they both make 

transitions at the same time. If M transitions f à f’ (f,f’ in AP), B~φ
transitions along the edges labeled by f’. B~φ observes M’s operation.

• If no such parallel execution is accepting in B~φ, then M |= φ 

q p
b

c

c

a

p,q

b

B~φ
M

S0 S1

~p

~ptrue
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LTL Model Checking

LTL Model Checking
• A trace of TS that is accepted by B~φ violates φ: TS is incorrect
• Find a counter-example (if any). I.e. a trace of M that is accepted by 

B~φ

q p
b

c

c

a

p,q

b

B~φ
M

S0 S1

~p

~ptrue

STUDENT
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LTL Model Checking

LTL Model Checking

• A trace of TS that is accepted by B~φ violates 
φ: TS is incorrect

• Want to run the automata in parallel…

q p
b,a,c

c,a

c,a,b

a

p,q

b S0 S1

~p

~ptrue

B~φ
M
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LTL Model Checking

LTL Model Checking

• A trace of TS that is accepted by B~φ violates 
φ: TS is incorrect

• Want to run the automata in parallel…
• Take the product automaton!

q p
b,a,c

c,a

c,a,b

a

p,q

b S0 S1

~p

~ptrue

B~φ
M
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LTL Model Checking

LTL Model Checking

• Given a model M and an LTL formula j
– Build the Buchi automaton B~j

– Compute product of M and B~j
• Each state of M is labeled with propositions
• Each state of B~j is labeled with propositions
• Match states with the same labels

– The product accepts the traces of M that are 
also traces of B~j (i.e. Tr(M)Ç L(~j))

– If the product accepts any sequence
• We have found a counterexample
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LTL Model Checking

Nested Depth First Search
• The product is a Büchi automaton
• How do we find accepted sequences?

– Accepted sequences must contain a cycle
• In order to contain accepting states infinitely often

– We are interested only in cycles that contain 
at least an accepting state

– During depth first search start a second 
search when we are in an accepting states

• If we can reach the same state again we have a 
cycle (and a counterexample)



Flavio Lerda and Madhur Behl

72

LTL Model Checking

Find an accepting trace

Accepting trace = cycle 
that contains an accepting 
state
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LTL Model Checking

Backup
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LTL Model Checking

LTL to Buchi complexity

• Every LTL formula of size n has a 
corresponding Buchi automaton of size 
2O(n) that accepts all and only the infinite 
state traces that satisfy the formula

• Example: G F p

S0 S1

p

p

~p

Bφ

true
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LTL Model Checking

Backup
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LTL Model Checking

• Given a model M and an LTL formula j
– Check if All traces of M satisfy j
– Tr(M) Í Sω is the set of traces of M

– L(j) Í (2AP)ω is the language accepted by (the 
Buchi automaton of) j

• M satisfies j if Tr(M)Í L(j)

• Equivalently Tr(M)Ç L(~j)= Æ
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