Model Checking

what is it? And what is it good for?

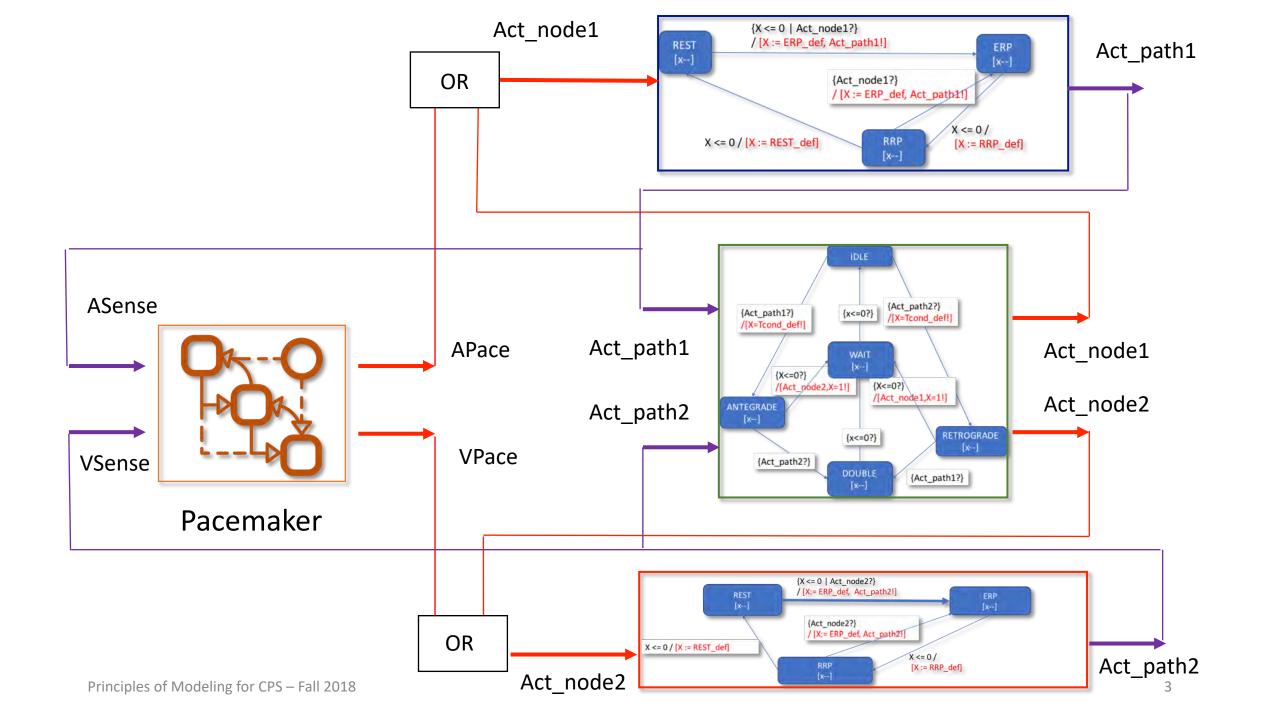
Lecture 14

Principles of Modeling for Cyber-Physical Systems

Instructor: Madhur Behl

So far...

• We modeled the heart (and pacemaker) as a timed automaton with clocks, resets and actions (messages) = timed automaton



So far...

- We modeled the heart (and pacemaker) as a timed automaton with clocks, resets and actions (messages) = timed automaton
- The modeling effort allows us to better understand the heart, ask the right questions, and focus on the important aspects for the task at hand.
- Importantly, it allows us to *automatically and exhaustively check* whether the heart+pacemaker satisfies some desirable properties.

Automatically and exhaustively

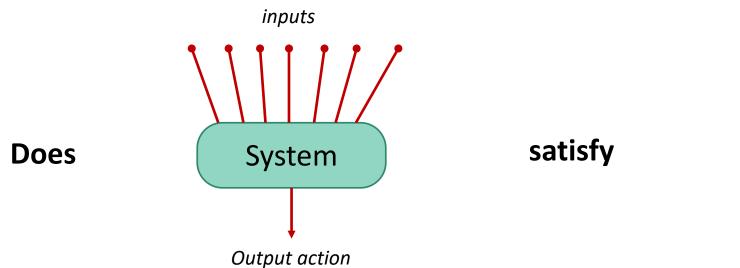
• Importantly, it allows us to *automatically and exhaustively check* whether the heart+pacemaker satisfies some desirable properties.

Automatically and exhaustively

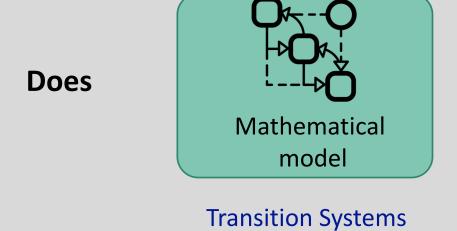
- Importantly, it allows us to *automatically and exhaustively check* whether the heart+pacemaker satisfies some desirable properties.
- Automatically: through a computer program
 - You provide a proof of a mathematical theorem...
 - ...vs. the computer provides the proof
- Exhaustively:
 - Testing: simulate the system N times. If testing returns "No bug found", there could still be a bug (e.g., revealed if you do another N simulations)
 - Exhaustive verification: if the model checker returns "Model is correct", then this answer is definitive there is indeed no specification violation. All executions of the model have been *exhaustively* checked.

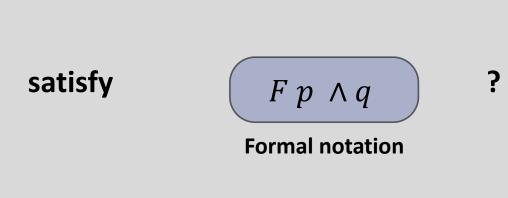
Next few lectures..

- We explore the basic ideas behind model checking: an automatic and exhaustive way of checking whether a system model satisfies some desirable property.
- Our timed automata are more complex than the models we study in this lecture - but what we study forms the basis for understanding all model checking algorithms out there.



Model Checking UPPAAL Model Checker





Linear Temporal Logic

Model Checking

See Itlmc.ppt

(LTL) Model Checking

Flavio Lerda with edits by Madhur Behl

Model checking: ingredients

- A mathematical model of the system to be verified
- A specification of correct behavior
- Seek to answer: does every infinite behavior of the system satisfy the specification?

Ingredients: Heart + pacemaker

- A mathematical model of the system: timed automata model of composition of heart + pacemaker
- A specification of correct behavior: e.g., Always, an Asense is followed by another Asense in at most 500ms
- Seek to answer: does every infinite behavior of the system satisfy the specification?

Model checking: the question

- Can we answer the question definitively?
 I.e. if the answer is Yes, this is a guarantee that the system model will never produce incorrect behavior.
- Contrast with testing

This lecture

- LTL model checking:
 - The model is a transition system
 - The correct behavior is an LTL formula
- Objective: understand fundamental concepts and uses of model checking

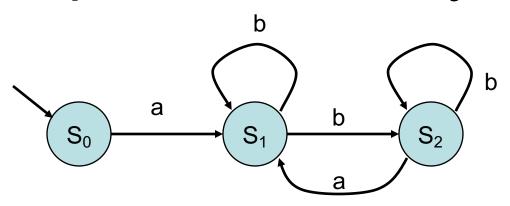
Atomic propositions

- A system model has variables, e.g., voltage.
- An atomic proposition p is a statement about the state variable, e.g. p := "voltage > 5" or "-4 <= voltage <= 4".
- In what follows, AP will denote a set of atomic propositions.

System model: a transition system

- A Transition System (TS) is a tuple (S, I, A, δ, AP, L)
 - S is a finite set of states
 - $-I \subseteq S$ is a set of initial states
 - A is a finite set of inputs (or `actions')
 - $-\delta \subseteq S \times A \times S$ is a transition relation: $s \rightarrow_a s'$
 - AP is a set of atomic propositions on S
 - L: S → 2^{AP} is a state labeling function.
 Intuitively, L(s) is the set of atomic propositions satisfied by state s.

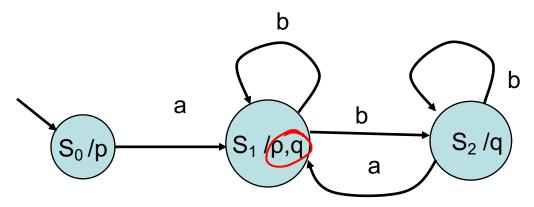
$$5.(50, S_1, S_2)$$
 $T=(S,T,A,S,AP,L)$
 $J:(S,J)$
 $A:(A,B)$
 C
 $S:(C,S_0,a,S_1)$
 $S:(C,S_0,a,S_1$



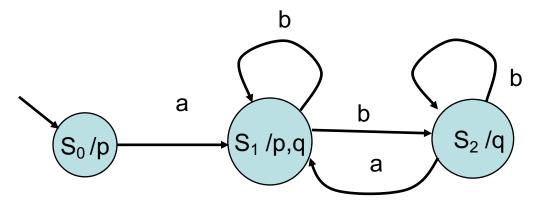
Identify the elements $\langle S, I, A, \delta, AP, L \rangle$ of this transition system

$$S((S_0, 9, 5)) \langle (g_2, b), S_2 \rangle$$

 $\langle (S_1, b), S_1 \rangle \langle (g_2, a), S_1 \rangle$
 $\langle (S_1, b), S_2 \rangle$



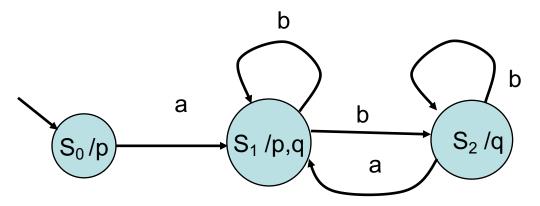
Labeling function: $L(s_0) = p$, $L(s_1) = \{p,q\}$, $L(s_2) = q$ $AP = \{p,q\}$



A path is an (infinite) sequence of states in the TS. E.g. $\sigma = S_0S_1S_2S_2S_2S_2...$ is a path in this TS

A *trace* is the corresponding sequence of labels. E.g. $p\{p,q\}qqqq...$ Is the trace corresponding to σ

A word is a sequence of inputs, e.g. abbbbbb... induces σ

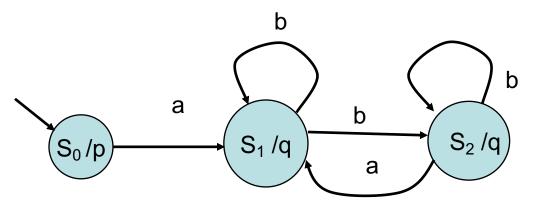


Word abbbbb... gives path $\sigma_1 = S_0 S_1 S_2 S_2 S_2 S_2 ...$ with trace $p\{p,q\}q^+$

Word abbbbb... gives path $\sigma_2 = S_0 S_1 S_1 S_1 S_1 S_1 ...$ with trace p{p,q}⁺

Word ababab... gives path $\sigma_3 = S_0 S_1 S_2 S_1 S_2 S_1 ...$ with trace p({p,q}q)*

Word ababbb... gives path $\sigma_4 = S_0 S_1 S_2 S_1^*$ with trace $p\{p,q\}p\{p,q\}^*$



Word abbbbb... gives path $\sigma_1 = S_0S_1S_2S_2S_2S_2...$ with trace pqqq...

Word abbbbb... gives path $\sigma_2 = S_0 S_1 S_1 S_1 S_1 S_1 ...$ with trace pqqq...

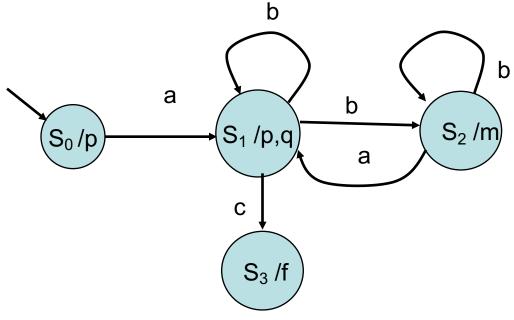
Word ababab... gives path $\sigma_3 = S_0 S_1 S_2 S_1 S_2 S_1 ...$ with trace pqqq...

Word ababbb... gives path $\sigma_4 = S_0 S_1 S_2 S_1$.. with trace pqqq...

Model checking

- A mathematical model of the system to be verified
- A specification of correct behavior
- Seek to answer: does every infinite behavior of the system satisfy the specification?

Example specifications



m holds true eventually m is always followed by q p holds continuously before f holds property (pq)m) ×

Logic

- Rather than focus on specific properties, like those described earlier, and developing custom property-specific checking algorithms...
- Let's define a language for describing all (most) properties of interest for systems modeled as transition systems...
- ...then develop an algorithm for checking any property expressible in this language.

Linear Temporal Logic (LTL)

- LTL is a logic (a `language') for describing properties of transition systems
- $p_k = an atomic proposition$
- For example, if x is a voltage signal

```
-p_1 := x < 70mV
```

$$-p_2 := t > 500ms$$

$$-p_3 := ln(x) > -0.5$$

$$-p_4 := e^{ax} + cos(x) > 45$$

b

Linear Temporal Logic (LTL)

- LTL is boolean logic, augmented with two temporal operators: X (next) and U (until)
- An LTL formula is defined inductively as follows:
 - Every atomic proposition p is a formula
 - If φ_1 and φ_2 are LTL formulas, then $\sim \varphi_1$, $\varphi_1 \lor \varphi_2$, $\varphi_1 \land \varphi_2$ are also LTL formulas
 - $-X \phi_1$ is a formula
 - $\varphi_1 \cup \varphi_2$ is a formula

NOT

P	_
True	
False	

NOT

Р	\neg
True	False
False	True

AND

P	Q	$P \wedge Q$
True	True	
True	False	
False	True	
False	False	

AND

Р	Q	$P \wedge Q$
True	True	True
True	False	False
False	True	False
False	False	False

OR

Р	Q	$P \vee Q$
True	True	
True	False	
False	True	
False	False	

OR

P	Q	$P \vee Q$
True	True	True
True	False	True
False	True	True
False	False	False

IMPLIES

Р	Q	$P \rightarrow Q$
True	True	
True	False	
False	True	
False	False	

IMPLIES

P	Q	$P \rightarrow Q$
True	True	True
True	False	False
False	True	True
False	False	True

So $p \rightarrow q$ follows the following reasoning:

- 1.a True premise implies a True conclusion, therefore $T \rightarrow T$ is T;
- 2.a True premise cannot imply a False conclusion, therefore $T \rightarrow F$ is F; and
- 3.you can conclude anything from a false assumption, so $F \rightarrow$ anything is T.

Linear Temporal Logic (LTL)

- LTL is boolean logic, augmented with two temporal operators: X (next) and U (until)
- An LTL formula is defined inductively as follows:
 - Every atomic proposition p is a formula
 - If φ_1 and φ_2 are LTL formulas, then $\sim \varphi_1$,
 - $-\phi_1 \vee \phi_2$, $\phi_1 \wedge \phi_2$ are also LTL formulas
 - $-X \phi_1$ is a formula
 - $-\phi_1 \cup \phi_2$ is a formula

LTL semantics intuition (slide courtesy of G. Fainekos at ASU)

p-p now

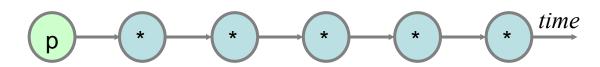
Gp- always p

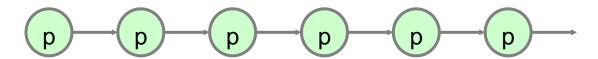
Fp- eventually p

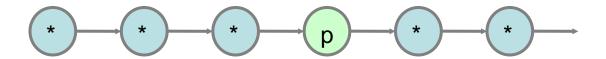
X p- next state p

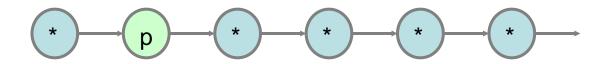
p **2** q − p until q

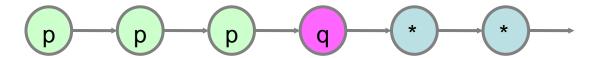
p **g** q − p before q

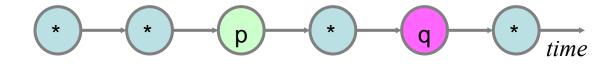


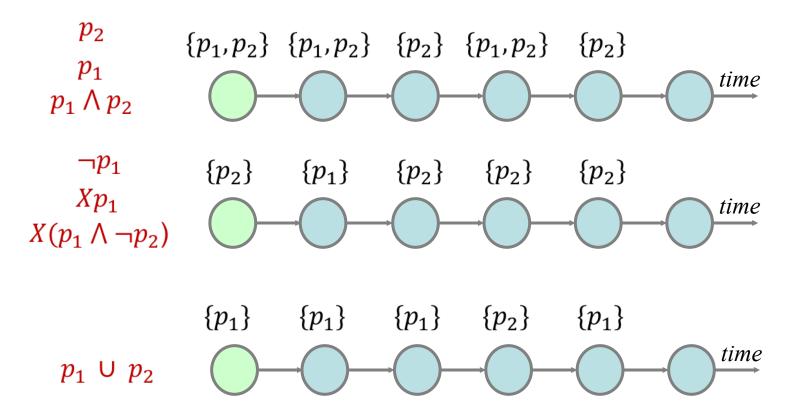










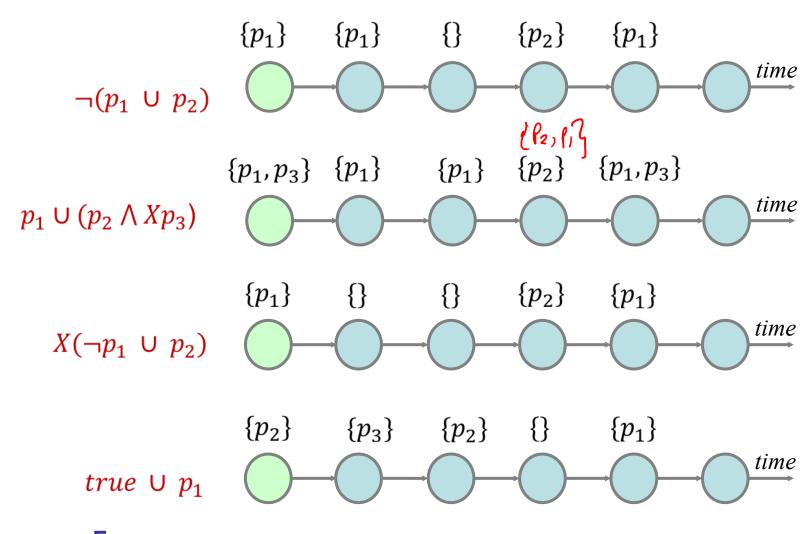


$$\phi \coloneqq true \mid p_1 \mid \emptyset_1 \land \emptyset_2 \mid \neg \emptyset_1 \mid X\emptyset \mid \emptyset_1 \cup \emptyset_2$$

$$p_i \in AP$$

 \emptyset_1 , \emptyset_2 : LTL formulas

$$\phi \coloneqq true \mid p_1 \mid \emptyset_1 \land \emptyset_2 \mid \neg \emptyset_1 \mid X\emptyset \mid \emptyset_1 \cup \emptyset_2$$

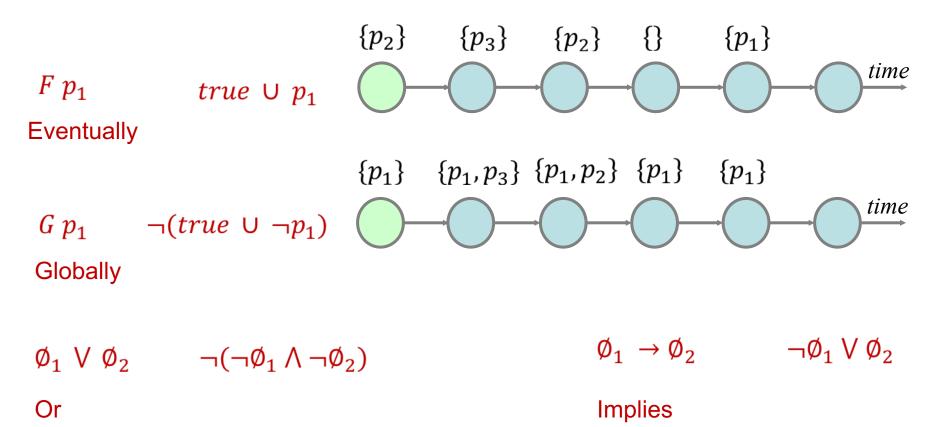


F p₁

 $G p_1$

Globally

Derived formulae



Linear Temporal Logic (LTL)

- LTL is boolean logic, augmented with two temporal operators: X (next) and U (until)
- An LTL formula is defined inductively as follows:
 - Every atomic proposition p is a formula
 - If φ_1 and φ_2 are LTL formulas, then $\sim \varphi_1$,
 - $-\phi_1 \vee \phi_2$, $\phi_1 \wedge \phi_2$ are also LTL formulas
 - $-X \phi_1$ is a formula
 - $-\phi_1 \cup \phi_2$ is a formula

Notation

 Sometimes you'll see alternative notation in the literature:

G 🗆

F ◊

X °

- Invariant (something always holds):
 - $-G(\sim p)$ (~ is negation)
- Response
 - $-G(p \rightarrow Fq)$
- Fairness
 - $-(G F p) \rightarrow (G F q)$

- Invariant (something always holds):
 - $-G(\sim p)$ (~ is negation)

Safety:

"something bad will not happen"

 $\Box \neg (reactor_temp > 1000)$

Liveness:

"something good will happen"

Typical examples:

 \Diamond rich

 $\Diamond(x > 5)$

 \square (start $\Rightarrow \lozenge$ terminate)

and so on.....

Usually: ♦....

Often only really useful when scheduling processes, responding to messages, etc.

Strong Fairness:

"if something is attempted/requested infinitely often, then it will be successful/allocated infinitely often"

Typical example:

$$\Box \Diamond ready \Rightarrow \Box \Diamond run$$

An LTL formula is defined inductively as follows:

- Every atomic proposition p is a formula
- If φ_1 and φ_2 are LTL formulas, then $\sim \varphi_1$, $\varphi_1 \vee \varphi_2$,
- $\varphi_1 \wedge \varphi_2$ are also LTL formulas
- $X \phi_1$ is a formula
- $-\phi_1 \mathcal{O}_{\phi_2}$ is a formula
- •Which of these are valid LTL formulas?

$$-\sim(\phi_1)\cup(\phi_2)$$

$$- G(\sim \varphi_1 \vee \sim \varphi_1)$$

$$(\varphi_1 \not Q \cup \varphi_2)$$

$$G(\sim \varphi_1 \vee \sim \varphi_1)$$

$$G(\sim \varphi_1 \vee \varphi_2)$$

$$G(\sim \varphi_1 \vee \varphi_2)$$

$$G(\sim \varphi_1 \vee \varphi_1)$$

$$G(\sim \varphi_1 \vee \varphi_2)$$

$$G(\sim \varphi_1 \vee \varphi_2)$$

$$G(\sim \varphi_1 \vee \varphi_1)$$

$$G(\sim \varphi_1 \vee \varphi_2)$$

$$G(\sim \varphi_1 \vee \varphi_1)$$

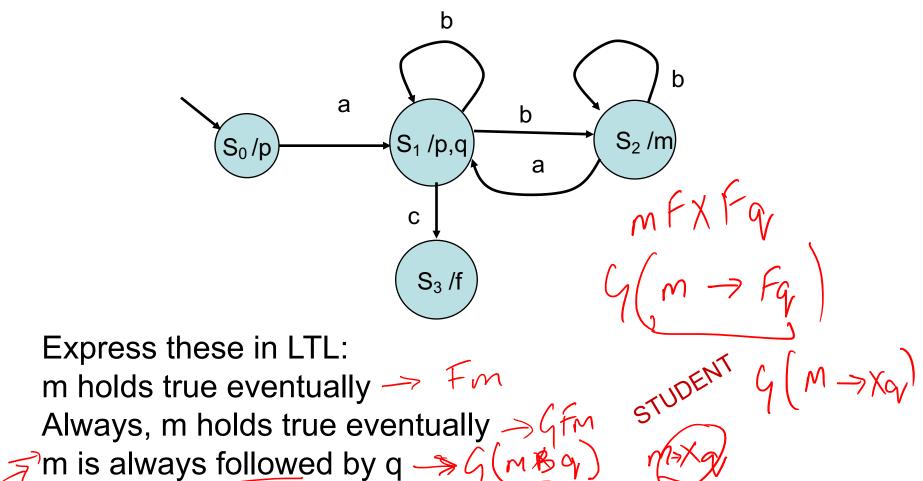
$$G(\sim \varphi_1 \vee \varphi_1)$$

$$G(\sim \varphi_1 \vee \varphi_2)$$

$$G(\sim \varphi_1 \vee \varphi_1)$$

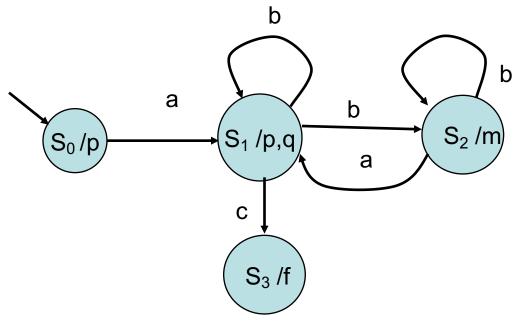
$$G$$

Example specifications in LTL



p holds continuously before f holds

Example specifications in LTL



Express these in LTL:

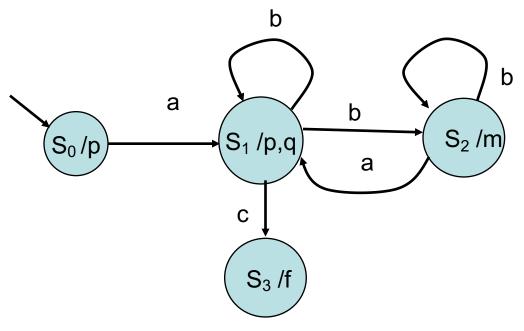
m holds true eventually: Fm

Always, m holds true eventually: GFm

m is always followed by q : $G(m \rightarrow X q)$

p holds true continuously before f holds true: p U f

Example specifications in LTL



Does the TS satisfy these specifications:

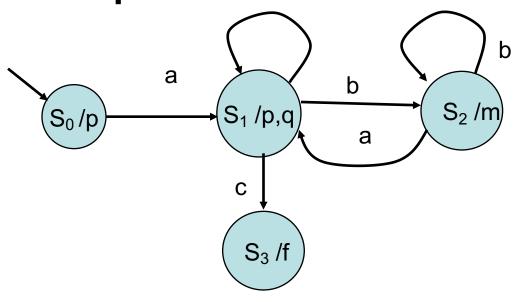
m holds true eventually: Fm

Always, m holds true eventually: GFm

m is always followed by q : $G(m \rightarrow X q)$

p holds true continuously before f holds true: p U f

Does the TS satisfy these specifications?



Does the TS satisfy these specifications:

m holds true eventually: Fm: No

Always, m holds true eventually: GFm: No

m is always followed by q : $G(m \rightarrow X q)$: No

p holds continuously before f holds: p U f: No

Announcements

- No Lectures next week! (Conference travel)
- Assignment 5 deadline has been extended from Tuesday, Nov 6 to Thursday, Nov 8m 11:59pm.
- A Simulink/Stateflow walkthrough video will be posted in lieu of the lectures next week. It will help with assignment 5.
- Assignment 6 on transition systems and LTL will be out next week on Thursday, Nov 8. It is due in 1 week – on Thursday, Nov 15, at 2:00pm (before the lecture).

LTL to Buchi automata

- We have a system model as a transition system (TS), aka an automaton.
- And a specification as an LTL formula
- Recall design principle: try to stick to the same formalism.

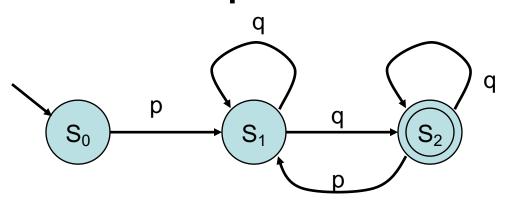
LTL to Buchi automata

- We have a system model as a transition system (TS), aka an automaton.
- And a specification as an LTL formula
- Recall design principle: try to stick to the same formalism.
- Every LTL formula has a corresponding Buchi automaton that accepts all and only the infinite state traces that satisfy the formula [Vardi and Wolper]

Büchi Automaton

- Automaton which accepts infinite paths
- A Büchi automaton is tuple (S, I, A, δ, F)
 - S is a finite set of states (like a TS)
 - $-I \subseteq S$ is a set of initial states (like a TS)
 - A is a finite alphabet (like a TS)
 - $-\delta \subseteq S \times A \times S$ is a transition relation (like a TS)
 - $-F \subseteq S$ is a set of accepting states
- An infinite sequence of states (a path) is accepted iff it contains accepting states (from F) infinitely often

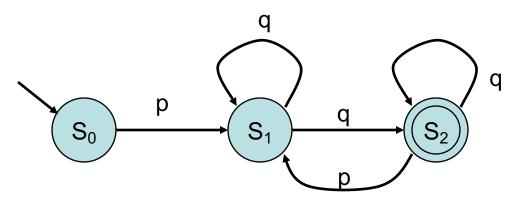
Identify Büchi Automaton components



STUDENT

- A Büchi automaton is tuple $\langle S, I, A, \delta, F \rangle$
 - S is a finite set of states (like a TS)
 - $-I \subseteq S$ is a set of initial states (like a TS)
 - A is a finite alphabet (like a TS)
 - $-\delta \subseteq S \times A \times S$ is a transition relation (like a TS)
 - $F \subseteq S$ is a set of accepting states

Example: accepted paths

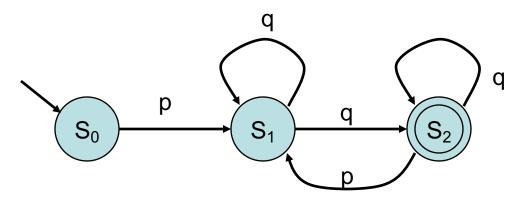


$$\sigma_1 = S_0 S_1 S_2 S_2 S_2 S_2 \dots$$
 ACCEPTED

$$\sigma_2 = S_0 S_1 S_2 S_1 S_2 S_1 \dots$$
 ACCEPTED

$$\sigma_3 = S_0 S_1 S_2 S_1 S_1 S_1 \dots$$
 REJECTED

Example: accepted words

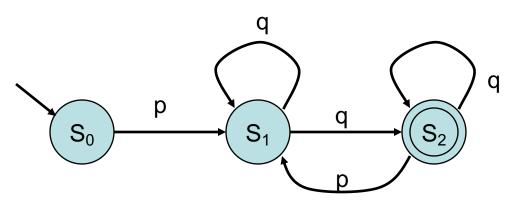


Automaton B = \langle S, I, A, δ , F \rangle

Word = infinite sequence of letters from alphabet A. E.g. pq^+ and $p(q^*qp)^*$ are both words.

What words are accepted by this automaton?

Example



Word = infinite sequence of letters from alphabet A.

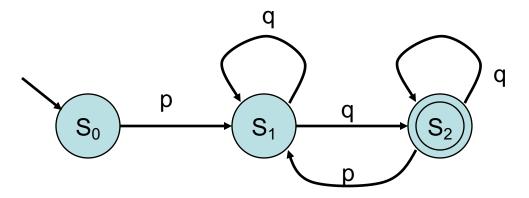
What words are accepted by this automaton B? $L(B) = pq^{+}(pq^{+})^{*}$

L(B) is called the language of B. It is the set of words for which there exists an accepting run of the automaton.

Non-determinism

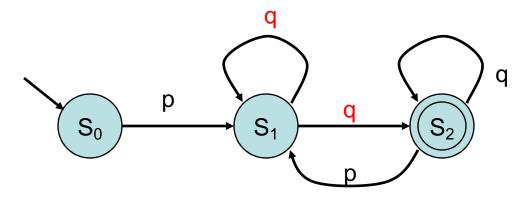
- Büchi automata are non-deterministic:
 - The next state is not uniquely defined
 - That is, the same input letter could lead to two different states

Example: Non-determinism



Example of non-determinism?

Example: Non-determinism



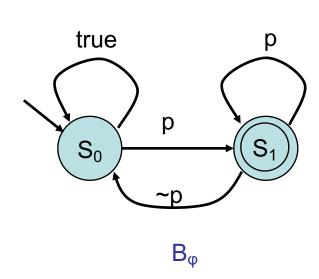
Non-determinism: (s_1,q,s_2) and (s_1,q,s_1) are in the transition relation δ

LTL to Buchi

- Every LTL formula has a corresponding Buchi automaton that accepts all and only the infinite state traces that satisfy the formula
- Example: $\varphi = G F p$

LTL to Buchi

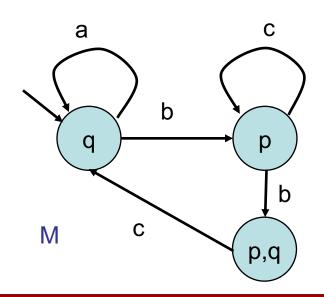
- Every LTL formula has a corresponding Buchi automaton that accepts all and only the infinite state traces that satisfy the formula
- Example: $\varphi = G F p$

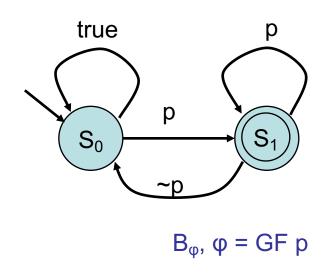


Checkpoint

- Where are we in the story?
 - What are we trying to do?
 - What are the pieces we assembled so far?

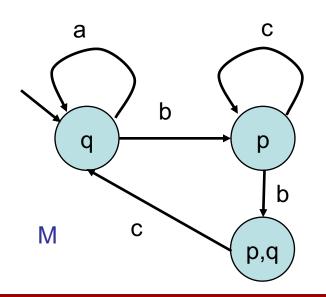
- TS M: input set A = {a,b,c} and AP={p,q}
- Formula $\varphi = G F p$
- Traces of M = infinite label sequences (e.g. σ_1 =({q},{p},{p,q})* and σ_2 ={q}*)

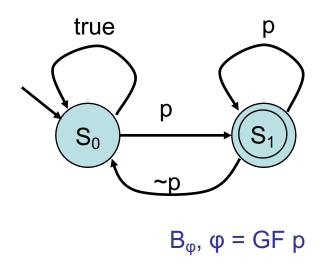




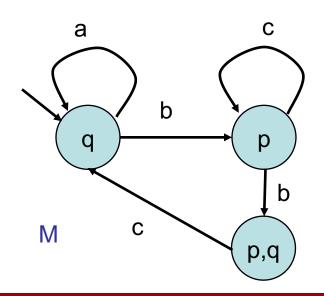
STUDENT

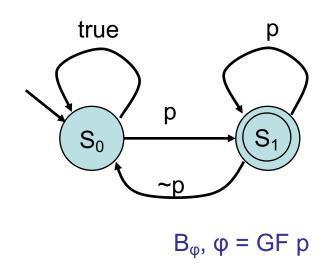
- TS M: input set A = {a,b,c} and AP={p,q}
- Not every trace of M satisfies formula. Give a counter-example





- TS M: input set A = {a,b,c} and AP={p,q}
- Not every trace of M satisfies formula. Counter-examples: σ_2 ={q}* and σ_3 =qp{p,q}q*



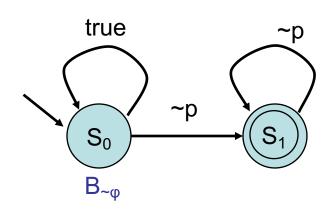


- B_{ϕ} accepts exactly those traces that satisfy ϕ
- $B_{\sim \phi}$ accepts exactly those traces that falsify (i.e., violate) ϕ
- Example (cont'd):

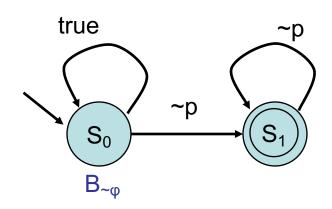
$$\sim \phi = \sim (GFp) = F \sim (Fp) = F(G \sim p)$$

• What is $B_{-\phi}$?

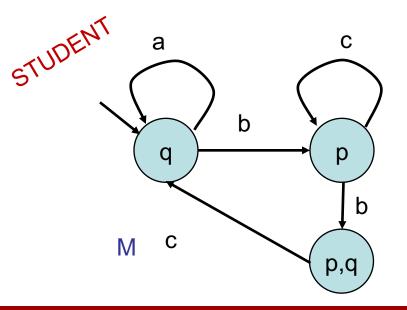
- B_{ϕ} accepts exactly those traces that satisfy ϕ
- $B_{\sim \phi}$ accepts exactly those traces that falsify ϕ
- $\sim \phi = \sim (GFp) = F \sim (Fp) = F(G \sim p)$

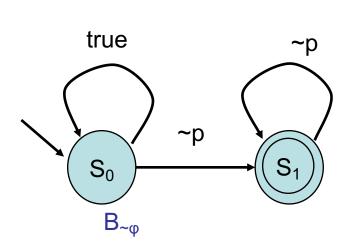


If TS generates a trace that is accepted by B_{~φ}, this means, by construction, that the trace violates φ, and so that the TS is incorrect (relative to φ)

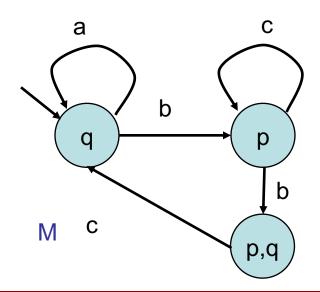


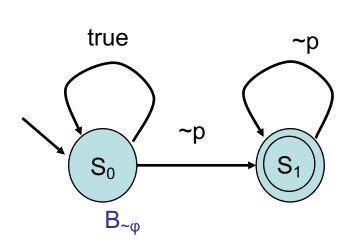
- A trace of TS that is accepted by B_{-φ} violates φ: TS is incorrect
- Imagine running the two automata in parallel: they both make transitions at the same time. If M transitions f → f' (f,f' in AP), B_{¬φ} transitions along the edges labeled by f'. B_{¬φ} observes M's operation.
- If every/no? such parallel execution is accepting in $B_{\sim 0}$, then M |= ϕ





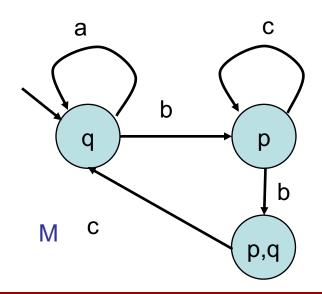
- A trace of TS that is accepted by B_{-φ} violates φ: TS is incorrect
- Imagine running the two automata in parallel: they both make transitions at the same time. If M transitions f → f' (f,f' in AP), B_{¬φ} transitions along the edges labeled by f'. B_{¬φ} observes M's operation.
- If no such parallel execution is accepting in $B_{\sim 0}$, then M |= ϕ

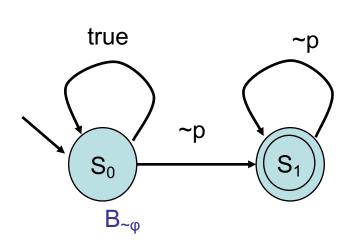




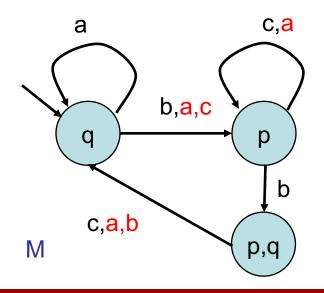
- A trace of TS that is accepted by $B_{\sim \phi}$ violates ϕ : TS is incorrect

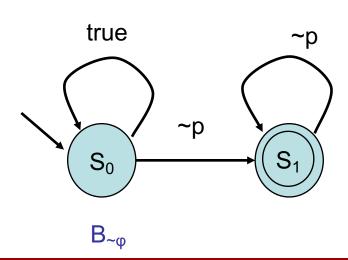
STUDENT





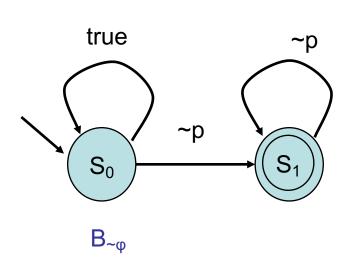
- A trace of TS that is accepted by $B_{\sim \phi}$ violates ϕ : TS is incorrect
- Want to run the automata in parallel...





- A trace of TS that is accepted by B_{-φ} violates
 φ: TS is incorrect
- Want to run the automata in parallel...
- Take the product automaton!



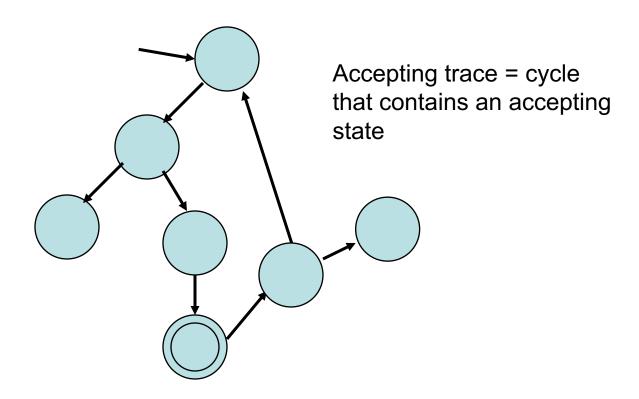


- Given a model M and an LTL formula φ
 - Build the Buchi automaton B_{-\phi}
 - Compute product of M and B_{~⊕}
 - Each state of M is labeled with propositions
 - Each state of B_{~0} is labeled with propositions
 - Match states with the same labels
 - The product accepts the traces of M that are also traces of B $_{\sim \phi}$ (i.e. $Tr(M) \cap L(\sim \phi)$)
 - If the product accepts any sequence
 - We have found a counterexample

Nested Depth First Search

- The product is a Büchi automaton
- How do we find accepted sequences?
 - Accepted sequences must contain a cycle
 - In order to contain accepting states infinitely often
 - We are interested only in cycles that contain at least an accepting state
 - During depth first search start a second search when we are in an accepting states
 - If we can reach the same state again we have a cycle (and a counterexample)

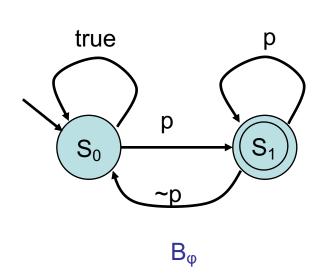
Find an accepting trace



Backup

LTL to Buchi complexity

- Every LTL formula of size n has a corresponding Buchi automaton of size 2^{O(n)} that accepts all and only the infinite state traces that satisfy the formula
- Example: G F p



Backup

- Given a model M and an LTL formula φ
 - Check if All traces of M satisfy φ
 - $-\operatorname{Tr}(M) \subseteq S^{\omega}$ is the set of traces of M
 - $-L(\phi) \subseteq (2^{AP})^{\omega}$ is the language accepted by (the Buchi automaton of) ϕ
- M satisfies φ if Tr(M) ⊆ L(φ)
- Equivalently Tr(M) ∩ L(~φ)= ∅