Model Sensitivity Analysis

Lecture 8

Principles of Modeling for Cyber-Physical Systems

Instructor: Madhur Behl

How do I know my model is any good?

In general
$$y = f(\theta, x(t), u(t))$$

We want to attribute, the uncertainty in ${\bf y}$ to the uncertainty and errors in parameters ${m heta}$, and inputs ${\bf u}$

Sensitivity =
$$\frac{How \ much \ does \ the \ output \ y \ change}{for \ a \ change \ in \ a \ single \ parameter \ or \ input}$$
 subject to, all other

subject to, all other things being the same.

Input-Output Sensitivity

 $\frac{\Delta y}{\Delta u}$

Parameter Sensitivity

 $\frac{\Delta y}{\Delta \theta}$

Abbreviation	Input parameter	Influence coefficient(2-3) (% OP per % IP)
U_{wall}	wall heat transfer	0.206
U_{glass}	glass heat transfer	0.098
g_{glass}	solar gain glass	-0.211
Heat gains	Amount of heat gain	-0.198
Awindow	window frame-to-glass ratio	0.123
VentR	Ventilation rate	0.485

Better models for better control..

Small and medium sized commercial buildings (90% of the commercial building stock) do not want to spend thousands of dollars on retrofitting.

"Accuracy costs money, how accurate do you want it?"

Sensor Data Quality vs Building Model Accuracy?

Two thermostats/actuators, same objective

Sensor Data Quality and Uncertainty

- 1) Due to Sensor Placement and Density
- 2) Due to Sensor Precision

Image courtesy Bryan Eisenhower (IMA talk)

Building Modeling: "RC-Networks"

Measure all Inputs and Disturbances

Ambient temperature, convective heat gain, radiative heat gain, external solar gain, ground temperature, cooling rate

Building Modeling: "RC-Networks"

Discrete-Time State Space Model:

(parameterized by θ)

$$x(k+1) = \hat{A}_{\theta}x(k) + \hat{B}_{\theta}u(k)$$

 $y(k) = \hat{C}_{\theta}x(k) + \hat{D}_{\theta}u(k)$

States (All node temperatures):

$$\mathbf{x} = [\mathsf{T}_{\mathrm{eo}}, \, \mathsf{T}_{\mathrm{ei}}, \, \mathsf{T}_{\mathrm{co}}, \, \mathsf{T}_{\mathrm{ci}}, \, \mathsf{T}_{\mathrm{go}}, \, \mathsf{T}_{\mathrm{gi}}, \, \mathsf{T}_{\mathrm{io}}, \, \mathsf{T}_{\mathrm{ii}}, \, \mathsf{T}_{z}]^\mathsf{T}$$

Inputs (Disturbances and Control):

$$u = [T_a, T_g, T_i, Q_{sole}, Q_{sole}, Q_{rade}, Q_{rade}, Q_{radg}, Q_{solt}, Q_{conv}, Q_{sens}]^T$$

Parameter Estimation:

Least Squares Error

$$\theta^* = \underset{\theta_l \le \theta \le \theta_u}{\operatorname{arg\,min}} \sum_{k=1}^{N} (T_{z_m}(k) - T_{z_{\theta}}(k))^2$$

subject to $\theta_l \leq \theta \leq \theta_u$

LIST OF PARAMETERS

$U_{\star o}$	convection coefficient between the wall and outside air
$U_{\star w}$	conduction coefficient of the wall
$U_{\star i}$	convection coefficient between the wall and zone air
U_{win}	conduction coefficient of the window
$C_{\star\star}$	thermal capacitance of the wall
C_z	thermal capacity of zone z_i
	g: floor; e: external wall; c: ceiling; i: internal wall

Accuracy of an Inverse Model

1) Model Structure

2) Parameter estimation algorithm

Non-Linear regression

3)Uncertainty in the input-output data

- North Facing
- 4 external brick walls
- 4 large windows
- Concrete floor and ceiling
- Philadelphia-TMY2 weather
- 3.5kW HVAC system

- 12 RC parameters
- 7 inputs, 1 output
- Baseline Model: RMSE 0.187
 °C, R² 0.971
- Introduce fixed
 perturbations/bias in each

input:
$$z'_i = z_i \pm (\delta * z_i)$$

Ambient temperature, convective heat gain, radiative heat gain, external solar gain, ground temperature, sensible cooling load

20

Model Accuracy
Sensitivity Coefficient
(for input u)

 $mean\left(rac{Normalized\ change\ in\ model\ accuracy}{Normalized\ input\ perturbation}
ight)$

Case study: Building 101

Building 101 is located in Philadelphia and it's the US DoE's Energy Efficient Buildings Hub Headquarter

Case study: Building 101

Model Accuracy for Training data

RMSE: 0.062 °C R2: 0.983

Baseline

22.5 PM 7:21 PM 7:53 PM 8:26 PM 8:58 PM 9:30 PM 10:03 PM

Model Accuracy for Test Data

RMSE: 0.091 °C R2: 0.948

Input Uncertainty Analysis: Building 101

Normalized % RMSE change in model <u>accuracy</u>

Model Accuracy Sensitivity Coefficient: Building 101

Sensor Placement and Quality of Data: Suite 210

4 Indoor Air Quality Sensors

1 portable Cart

Zone Thermostat

Is there a bias in the Thermostat data due to its location?

Compare the "true" (mean) temperature with thermostat measurement

Sensor Placement and Quality of Data: Suite 210

Sensor Placement and Quality of Data: Suite 210

Sensor Placement and Bias

Maybe not..

Multiple subsets could be compared

A closer look at temperature data

Temperature sensor data is not normal (Gaussian)

Non-parametric statistical methods

Use Wilcoxon's rank sum test and Bland-Altman plots to quantify bias and identify best sensor placements.

Non-parametric statistical methods

TABLE II: Wilcoxon's test results for all values of k

k	Min. bias subset T_k	Bias Estimate μ_k
1	S_4	0.0275
2	S_3, S_4	-0.0106
3	$S_1, S_2, Tstat$	0.00708
4	$S_1,S_3,S_4,Tstat$	0.22
5	$S_1,S_3,S_4,S_2,Tstat$	-

34

Zone Temperature – Business as usual

Zone Temperature – Business as usual

Zone Temperature – Business as usual

Case study: Building 101

Model Accuracy for Training data

RMSE: 0.062 °C R2: 0.983

Baseline

22.5 Predicted Actual 21.5 6:50 PM 7:21 PM 7:53 PM 8:26 PM 8:58 PM 9:30 PM 10:03 PM

Model Accuracy for Test Data

RMSE: 0.091 °C R2: 0.948

Case study: Building 101

AHU Functional Tests: Suite 210

Functional tests were carried out in Suite 210 in June 2013.

AHU Functional Tests: Suite 210

Functional tests were carried out in Suite 210 in June 2013.

What is Experiment Design?

Optimal Experiment Design

Find the optimal input signal trajectory which maximizes the information about the model parameters subject to operational constraints.

Optimal Experiment Design

Likelihood functions play a key role in statistical inference and parameter estimation.

$$L = \mathbf{P}[\mathtt{data}|\mathtt{model}]$$

The probability that we see the given data due to the model we have assumed for the building/equipment.

(1) We want an estimate which maximizes the likelihood function.

Maximum Likelihood Estimate

(2) Some way to quantify the difference between likelihood functions i.e. how quickly does it fall of around the maximum

$$L(\alpha) \equiv L(\alpha) + \frac{\partial L(\alpha)}{\partial \alpha} /_{\alpha^*} (\alpha - \alpha^*) + \frac{\partial^2 L(\alpha)}{\partial \alpha^2} |_{\alpha^*} (\alpha - \alpha^*)^2$$

$$= 0 \text{ at maxima } \alpha^*$$
Fisher information

Cramer-Rao bound

Let y^t denote the set of t measurements y(0), y(1),, y(t-1).

The likelihood function

$$L(\alpha) = \mathbf{P}[y^t; \alpha]$$
 model data

For any <u>unbiased</u> estimator we have the following Cramer-Rao lower

bound:

$$\mu(\alpha) = \alpha^* - \mathbf{E}[\hat{\alpha}|\alpha^*]$$

Error covariance of α

$$\Sigma(\alpha) \ge I^{-1}(\alpha)$$

Fisher information matrix (FIM)

$$\Sigma(\alpha) = \mathbf{E}[(\alpha^* - \hat{\alpha})(\alpha^* - \hat{\alpha})' | \alpha^*]$$

$$I_{y^t}(\alpha) = -\mathbf{E}\left[\frac{\partial^2}{\partial \alpha^2} \ln \mathbf{P}(y^t | \alpha)\right]$$

For the RC 'grey box' building model

$$x(t+1) = A_{\alpha}x(t) + B_{\alpha}u(t) + W\omega(t)$$
$$y(t+1) = C_{\alpha}x(t+1) + D_{\alpha}u(t+1) + \nu(t+1)$$

State space model

$$\mathbf{P}[y(\tau)|y(\tau-1);\alpha] = \frac{1}{\sqrt{2\pi \det[F(t)]}} e^{\frac{-1}{2}[r^T(t)F^{-1}(t)r(t)]}$$
 Likelihood function

Need Kalman filter equations to compute the likelihood function.

$$F(t) = \mathbf{E}[y(t) - \hat{y}(t|t-1)][y(t) - \hat{y}(t|t-1)]^{T}$$
$$= C\Sigma(t|t-1)C^{T} + R$$

$$\Sigma = A\Sigma A^T + WQW^T - A\Sigma C^T (C\Sigma C^T + R)^{-1} C\Sigma A^T$$

But where is the experiment design?

First we compute the Fisher Information Matrix

$$\begin{split} \underline{\underline{I}}_{\underline{z}^{t}}(\underline{\alpha}) &= \sum_{\tau=0}^{t} \ \mathrm{tr} \left[\frac{\overline{\partial \underline{r}(\tau;\underline{\alpha})}}{\partial \alpha_{\mathbf{i}}} \ \frac{\overline{\partial \underline{r}'(\tau;\underline{\alpha})}}{\partial \alpha_{\mathbf{j}}} \ \underline{\underline{s}^{-1}(\underline{\alpha})} \right] \\ &+ \ (\mathsf{t+1}) \ \mathrm{tr} \left[\underline{\underline{s}}_{\mathbf{i}\,\mathbf{j}}(\underline{\alpha}) \,\underline{\underline{s}^{-1}(\underline{\alpha})} \ + \ \underline{\underline{l}}_{\mathbf{j}} \, \frac{\partial \underline{\underline{s}(\underline{\alpha})}}{\partial \alpha_{\mathbf{i}}} \ \underline{\underline{s}^{-1}(\underline{\alpha})} \ \frac{\partial \underline{\underline{s}(\underline{\alpha})}}{\partial \alpha_{\mathbf{j}}} \ \underline{\underline{s}^{-1}(\underline{\alpha})} \right] \end{split}$$

Depends only on the inputs and disturbances into the system

Optimality criteria

Optimality criteria of the information matrix

A-optimal design ⇔ average variance

$$\min_{y} trace(I(y)^{-1})$$

D-optimality uncertainty ellipsoid

$$\min_{y} det(I(y)^{-1})$$

E-optimality ⇔ minimax

$$\min_{y} \max(eig(I(y)^{-1}))$$

Almost a complete alphabet...

Example

Cai, Jie, et al. "Optimizing zone temperature set-point excitation to minimize training data for data-driven dynamic building models." *American Control Conference (ACC), 2016*. IEEE, 2016.

Optimal and conventional temperature set-point profiles

Performance comparison of models trained with conventional and optimal training data sets

