
Lecture 8

Pr inc ip les  of  Model ing for  Cyber-Phys ica l  Systems

Instructor:  Madhur  Behl
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Model Sensitivity Analysis



How do I know my model is any good ?
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Sensitivity Analysis

In general ! = #(%, ' ( , ) ( )

We want to attribute, the uncertainty in y to the uncertainty and errors in parameters +, 
and inputs u

Sensitivity = ,-./012 3-45 624 -06706 8 129:;4
<-= 9 129:;4 >: 9 5>:;?4 79=9/464= -= >:706 subject to, all other things being the same.
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Sensitivity Analysis
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Input-Output Sensitivity
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Sensitivity Analysis
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Sensitivity Analysis



Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 7

Sensitivity Analysis



Better models for better control..

High Poor
Building Model Accuracy

Sensor Placement & Density

Most BuildingsRequired for advanced 
control (MPC)

High retrofitting cost

Small and medium sized commercial buildings (90% of the commercial building stock) do 

not want to spend thousands of dollars on retrofitting.
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“Accuracy costs money, 

how accurate do you want it ?”

Sensor Data Quality vs Building Model Accuracy?
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Sensor Data Quality and Uncertainty

1) Due to Sensor Placement and Density

Image courtesy Bryan Eisenhower (IMA talk)

4) Measurement Noise

3) Due to Inference: E.g. Heat gains from Occupancy
measured with people counters

2) Due to Sensor Precision

vs

$500 $1
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Building Modeling: “RC-Networks”

Wall 
Dynamics

Measure all Inputs and Disturbances
Ambient temperature,  convective heat gain, radiative heat gain, external 

solar gain, ground temperature, cooling rate
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Discrete-Time State Space Model:
(parameterized by θ)

States (All node temperatures): 
x = [Teo, Tei, Tco, Tci, Tgo, Tgi, Tio, Tii, Tz]T

Inputs (Disturbances and Control): 
u = [Ta, Tg, Ti, Qsole, Qsolc, Qrade, Qradc, Qradg, Qsolt, Qconv, Qsens]T

Parameter Estimation: 
Least Squares Error
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Building Modeling: “RC-Networks”



Accuracy of an Inverse Model

1)Model Structure

2)Parameter estimation algorithm

3)Uncertainty in the input-output data

Non-Linear regression

FIXED

FIXED
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Measurement
Data

Cooling Rate
Convective Heat Gain

Solar Irradiance
Radiative Heat Gain
Transmitted Solar

Ambient Temperature
Surface Temperatures

Input Uncertainty Analysis 

Parameter
Estimation
(Inverse Model 

Training)

Baseline Model
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Measurement
Data

Cooling Rate
Convective Heat Gain

Solar Irradiance
Radiative Heat Gain
Transmitted Solar

Ambient Temperature
Surface Temperatures

Artificial Data
Cooling Rate (i)

Artificial Data
Cooling Rate (N)

Parameter
Estimation
(Inverse Model 

Training)

Baseline Model

Perturb each input
(N perturbations)
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Input Uncertainty Analysis 



Measurement
Data

Cooling Rate
Convective Heat Gain

Solar Irradiance
Radiative Heat Gain
Transmitted Solar

Ambient Temperature
Surface Temperatures

Artificial Data
Cooling Rate (i)

Artificial Data
Cooling Rate (N)

Parameter
Estimation
(Inverse Model 

Training)

Baseline Model

Perturb each input
(N perturbations) Parameter

Estimation

(N models)
(N different fits)

Model w.
Cooling Rate(i)

Parameter
Estimation

Model w.
Cooling Rate(i)
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Input Uncertainty Analysis 



Measurement
Data

Cooling Rate
Convective Heat Gain

Solar Irradiance
Radiative Heat Gain
Transmitted Solar

Ambient Temperature
Surface Temperatures

Artificial Data
Cooling Rate (i)

Artificial Data
Cooling Rate (N)

Parameter
Estimation
(Inverse Model 

Training)

Baseline Model

Perturb each input
(N perturbations) Parameter

Estimation

(N models)
(N different fits)

Model w.
Cooling Rate(i)

Parameter
Estimation

Model w.
Cooling Rate(i)

Compare
Prediction 

Error

Common 
input for

evaluation
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Input Uncertainty Analysis 



Uncertainty analysis with TRNSYS building

• North Facing

• 4 external brick walls

• 4 large windows

• Concrete floor and ceiling

• Philadelphia-TMY2 weather

• 3.5kW HVAC system 
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• 12 RC parameters

• 7 inputs, 1 output

• Baseline Model: RMSE  0.187 

°C, R2 0.971

• Introduce fixed 

perturbations/bias in each 

input: !"# = !" ± (' ∗ !")
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Uncertainty analysis with TRNSYS building



Ambient temperature,  convective heat gain, radiative heat gain, external 

solar gain, ground temperature, sensible cooling load

Normalized 

% RMSE 

change in 

model 

accuracy

% Input 
Perturbation
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Uncertainty analysis with TRNSYS building
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Model Accuracy 
Sensitivity Coefficient

(for input u)
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Uncertainty analysis with TRNSYS building



Case study: Building 101

Building 101 is located in Philadelphia 
and it’s the US DoE’s Energy Efficient Buildings Hub Headquarter
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Model Accuracy for 
Training  data

RMSE: 0.062 °C
R2: 0.983

Model Accuracy 
for Test Data

RMSE: 0.091 °C
R2: 0.948

Baseline
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Case study: Building 101



Input Uncertainty Analysis: Building 101
Normalized % 

RMSE change in 
model accuracy

% Input 
Perturbation
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Model Accuracy Sensitivity Coefficient: Building 101

Porch 
Temperature

Cooling Rate

Zone 
Temperature

Implications ?
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26

Sensor Placement and Quality of Data: Suite 210

4 Indoor Air Quality 
Sensors 1 portable Cart Zone Thermostat
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Compare the “true” (mean) temperature with thermostat measurement

Thermostat = G(Mean Temperature)

Is there a bias in the Thermostat data due to its location ?
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Sensor Placement and Quality of Data: Suite 210

Comparison

Residuals ~ 1% bias



Porch 
Temperature

Cooling Rate

Zone 
Temperature

29

~1% bias in Zone temperature (Tz) 
is significant enough

Model accuracy can vary by 
> 20%

Sensor Placement and Quality of Data: Suite 210



Sensor Placement and Bias

Is comparing two means a good idea ?
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T

2134

31

32 C

Maybe not..
Multiple subsets could be compared
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A closer look at temperature data
Temperature sensor data is not normal (Gaussian)
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Non-parametric statistical methods
Use Wilcoxon’s rank sum test and Bland-Altman plots to quantify bias and 
identify best sensor placements.
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Non-parametric statistical methods



Zone Temperature – Business as usual
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Zone Temperature – Business as usual
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Zone Temperature – Business as usual
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Model Accuracy for 
Training  data

RMSE: 0.062 °C
R2: 0.983

Model Accuracy 
for Test Data

RMSE: 0.091 °C
R2: 0.948

Baseline
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Case study: Building 101



Model Accuracy for 
Training  data

RMSE: 0.062 °C
R2: 0.983

Model Accuracy 
for Test Data

RMSE: 0.091 °C
R2: 0.948

Baseline
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Case study: Building 101

How did you learn this model ?



AHU Functional Tests: Suite 210
Functional tests were carried out in Suite 210 in June 2013. 

Principles of Modeling for CPS – Fall 2018 Madhur Behl madhur.behl@virginia.edu 40



AHU Functional Tests: Suite 210
Functional tests were carried out in Suite 210 in June 2013. 
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Is this optimal ?



What is Experiment Design ?
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Optimal Experiment Design

Find the optimal input signal trajectory which maximizes the 

information about the model parameters subject to 

operational constraints.
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Find the optimal input signal trajectory which maximizes the 

information about the model parameters subject to 

operational constraints.

Requires some 
optimality criteria

Specify information 
metric

Needs a suitable  
parameter estimation 

method
Cannot play with set-
points at the cost of 

comfort
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Optimal Experiment Design



Maximum Likelihood & Fisher Information 

Likelihood functions play a key role in statistical inference and parameter
estimation.

The probability that we see the given data due to the model we have assumed
for the building/equipment.
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L

Model(α)
α2α1 Inconsistent 

parameter values
α*

True parameter 
value
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Maximum Likelihood & Fisher Information 



L

α* α2α1

Model(α)

Consistent 
parameter values

True parameter 
value
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Maximum Likelihood & Fisher Information 



(1) We want an estimate which maximizes the likelihood function.

Maximum Likelihood Estimate
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Maximum Likelihood & Fisher Information 



(2) Some way to quantify the difference between likelihood 
functions i.e. how quickly does it fall of  around the maximum

= 0 at maxima α*
Fisher information
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Maximum Likelihood & Fisher Information 



Cramer-Rao bound
Let yt denote the set of t measurements y(0), y(1), ……, y(t-1).

The likelihood function

For any unbiased estimator we have the following Cramer-Rao lower
bound:

data

model

Error 
covariance 
of α

Fisher 
information 
matrix (FIM)
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For the RC ‘grey box’ building model

State space 
model

Likelihood function

Need Kalman filter 
equations to compute 

the likelihood 
function.
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But where is the experiment design ?

First we compute the Fisher Information Matrix

Depends only on the inputs and disturbances into the system
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Optimality criteria of the information matrix 
◦ A-optimal design ó average variance

◦ D-optimality ó uncertainty ellipsoid  

◦ E-optimality ó minimax

◦ Almost a complete alphabet… 

Stone, DeGroot and Bernardo

Optimality criteria

min$ %&'() *(,)./

min$ 0)% *(,)./

min$ max()34 * , ./ )
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Example

Cai, Jie, et al. "Optimizing zone temperature set-point excitation to minimize training data for 
data-driven dynamic building models." American Control Conference (ACC), 2016. IEEE, 2016.
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Input: 

Tamb, Tstorage, Qsol, Qconv, Qsol,trans,Qrad, Tzone

Output: 

Qsen



Optimal and conventional temperature set-point profiles
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Performance comparison of models trained with conventional and optimal training data sets


