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Previously..

How to find the values of the parameters ? T,

1/Ugo [Ceiling]
I|I CCi Tco Q'sol,c

U,, convection coefficient between the wall and outside air
U,» conduction coefficient of the wall )
U,; convection coefficient between the wall and zone air 7. W

T, [Windows]
Q'solt/2 Q'solt/2

Tio T
) ) > , AN —
Uwin conduction coefficient of the window [External i | M | 1/
: Int |
C,. thermal capacitance of the wall Walls] o Wty

C',  thermal capacity of zone z;
g: floor; e: external wall; c: ceiling; 7: internal wall
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Parameter estimation overview

* Simple Linear Regression
* Least squares
* Non-linear least squares
» State-space sum of squared errors
* Non-linear optimization (estimation) methods
* Global and local search

* MATLAB implementations
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Simple Linear Regression

{( X) V)]

Suppose we collect some data and want to ;o Z
determine the relation between the observed °
values, y, and the independent variable, x: y o ° °

responsc 0

(dependent e .

variable) o .' °
We can model the data using a linear model -

3 Tt X predictor
5 W Tu (G :
E_% + ﬂ_! Xj + € ) (independent variable)

( Y oy =
2 T N
observed unknown unknown unknown

response intercept  slope random
error
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Simple Linear Regression

) o0bs

yi =Po+ Pixi + € L
/ T \ \ Yy e ©

observed unknown unknown unknown - °

response intercept  slope random response °
(dependent °
crror variable) °
(©) (©)
B, and 3, are the parameters of this linear model. °

X predictor
(independent variable)

Don’t know the true values of the parameters.
Estimate them using the assumed model and the observations (data)
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Simple Linear Regression

| |
Vi =y +(l)1))fl- + e}’

ST N N

observed estimate estimate residual
response  of f3, of B, — y
\/

Estimate b, and b, to obtain the best fit of the simulated values
to the observations. X

One method: Minimize sum of squared errors, or residuals.
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Simple Linear Regression

s1mu1ated values/ yl A
| e =1

Vi M Teé _ _

/" T >\T \ v
. . . [’\T, 2 r}
observed estimate estimate residual
response  of f3, of B,

X
Sum of squared residuals: ~S(b,,b, ) = %ef = Z(yi —y!)? =Z& —b, —bf@&ff:
Y v i=1 — i= Z’— =1 - /
To minimize: S G_S = d G—S =
. et abo an 8121
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Simple Linear Regression

n n h ﬂ)
AS(b,b)=Y e =Y 0~y =Y, @%—507})2 n 2’
T b Y= Xy -

=1 1=1

LA |
T, - M op
— — n n o n
2 by Zx; + by 2 x7 = 22Xy
This results in the normal equations: =1 =1 =1

Solve these equations to obtain expressions for bp and b, the parameter estimates that give the best fit
of the simulated and observed values.
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Linear Regression in Matrix Form

N
oY /
roo ! ¢
Linear regression model: ¥; =by +bx; +¢; i=1n > Y= %[?7 te
|V =,
v Y,
v A ) o | .
yl 1 xl el ch = bv-l x|-b\ + (
1 x e
y=|"2| x|, 7 b{bo} e=|7
. . . bl :
_y n_ _1 xn | i en |
vector of matrix of vector of Vec.‘g)r (1>f
observed Predictors/ parameters ~ TESIAUAIS
values features
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Presenter
Presentation Notes
In general 


Linear Regression in Matrix Form

Linear regression model: Vi =by +bx; +e; i=1n > y=Xb +e

— ]

The normal equations (b’ is the vector of least-squares estimates of b):

Using
summations
And setting the
derivative to O

by +by

=l

=1

n
X =

n n 0 n
b le-+b12xl- =>X

1=1

n
.Zy,- v

1=1

=l

~

Vi

Using matrix notation:

5/ ,
xXTxp=xTy > xTx)y'x? ZL
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Presentation Notes
Note that this is a closed form solution…Only depends on the invertibility of XTX matrix..depends on the data..


Ordinary least squares

\)': - %\ k(\)’zﬂ\ Yoo ‘-%ﬂﬂ*\'x“k
v Y i _ i _ i
Y 1 X1 Xo1 ... Xm G1 €1
Ys 1 X2 Xoo ... Xpgo B2 €2
- . p— : : : : : + :
_Yn_nxl i 1 Xy, X9, ... an_ _/BK;?;‘_ | En |41
nXxXk+1 k+1 x 1

This can be rewritten more simply as:

Principles of Modeling for CPS — Fall 2020 Madhur Behl madhur.behl@virginia.edu



Ordinary least squares

N b
!
N
e=y—Xf
The sum of squared residuals (RSS) is €’e.
P
€2
[61 €2 ... ... en]lxn f :[61X61+62X62+...+6n>(6n]1x1
| En nxl1
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Ordinary least squares

The sum of squared residuals (RSS) is €’e.

de = (y—XB)(y—XP)
= yy—BX'y— X3+ B8 X' X3
s (P) = yy—208X"y+ X' XS
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Ordinary least squares

de = yy—20Xy+3X' X3

Oee
__é

— = 9X'y+2X'X3=0
9B
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Linear versus Nonlinear Models

Linear models: Sensitivities of the output are not a function of the model parameters:

M(@A) dy oA

Jil’ = b() +b1)fl'

| X1
oy; oy 1 x
7 Y =1 and;ﬁ:\)ﬁ;recall X = : 2

oby = ol
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Presenter
Presentation Notes
These are sensitivities: derivative of the response function simulated value w/r/t a model parameter. dS/db = f (dy/db), and dy/db are constant for linear model; therefore dS/db is constant no matter what the values of b are.
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Linear versus Nonlinear parameters

.

Ar [ \\
556(?0)&0\) "‘—lek\/t - L\bo\’b\)i\"))
- — 2
v, B

Linear models have elliptical objective function surfaces.

-_ i.e. the level sets of the objective function (sum of errors
" squared) are ellipsis.

One step to get to the minimum.
_\
g = () Ay
Nonlinear parametric models: Sensitivities
are a function of the model parameters.

With two parameter
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Presentation Notes
Obj func surface shown: Nice shape – well defined global minimum, no local minima.
For linear problems, get to minimum of this surface (to optimal values of b0,b1) in just 1 step of solving normal equations.
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Nonlinearity is in parameter space.

x(k + 1) = Ag(R)x(k) + By(kyu(k) A<

y(k) = Co(k)x(k) + Dy(k)u(k)

8 :[U(_,_/_Ucav/_u_m& ';/CC,CL)]

Elements of A, B, C, and D could be non-linear in the parameter 6
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Nonlinear Estimation

Suppose that we have collected data on the output/response Y (n samples),
2 (Y1 Yor --Y,) "

corresponding to n sets of values of the independent variables/predictors/features

X, X,, ... and X5 [ To> 79, T, Bsd - = D
° (XY1) Xyqp vees Xpl) )
° (X197 X9r -0 Xp2),
°...and
o (xlg, Xy veer xpn).
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Nonlinear Estimation

@/L)
For possible values %’1, o, ..., 6’q of the parameters, the residual sum of
squares function -
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is the predicted value of the response variable yi from the values of the p independent variables x1i, x2i, ..., xpi using the model f and the values of the parameters q1, q2, ... , qq.



Nonlinear Estimation

n n Y
5(91,92, ...,Qq)= . (y,-—ﬁ,-)z :Z[yi_f(xli"XZi’ ""‘xpi|91’92’ °°°’9q)]2

—

The least squares estimates of é’l, 6, ..., 8, are values which minimize S(ﬂl, 0, ..., Hq).
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Nonlinear Estimation

S

(y,— 3] = %[yi —z(xli,xzi, x,)0,6,, ...,0,)F

50,0, ....6,)=

— 9

To find the least squares estimate we need to determine when all the derivatives S(6,, 6,, ..., 8,) with
respect to each parameter @, 8,, ... and ¢9q are equal to zero.

This will involve, terms with partial derivatives of the non-linear function f.
ﬁ Hen -

8f(.)) (8F(-))  8F ()
Q” 50, )’(592 r s,
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Nonlinear Estimation

SF(..) Sf(.)  8f(.)
50, ' 86, '’ &6,

Closed form analytical solutions are not possible.

It is usually necessary to develop an iterative technique for solving them
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Presenter
Presentation Notes
In a nonlinear system, the derivatives are functions of both the independent variable and the parameters, so these gradient equations do not have a closed solution. Instead, initial values must be chosen for the parameters. Then, the parameters are refined iteratively, that is, the values are obtained by successive approximation


| 4\8\ 95¢ %(&”>
D x(k+1) = A,(k)x(k) + B, (k)u(k)
- y(k) = Co(k)x(k) + Dy(k)u(k)
oDl ) ( |
.

I =20, u(k), by, -, 0)
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How can we compute the sum of
squared error for state-space models ?

~x(k + 1) = Agx(k) + Byu(k)

y(k) = Cy(k) + Dgu(k)

Consider the LTI model

Madhur Behl madhur.behl@virginia.edu



sum of squared error for state-space models

\Y X Uo
Given x(0) = xo and u(k) k=0, Q_/I__l_ ﬁ\l(col: C,x(0) + Dgu(0)
/7 —
¢, x(1) = Agx(0) + Byu(0) (1) = €D + Dyu(1)
x(2)\=—/§?(1) + Byu(1) -y = CQAH’EL,ED + CoBout(0) + Do)

%(2) = AyAgx(0) + AyBu(0) + Byu(1) y(2) = Co%(2) + Dyu(2)

y(2) = C4A,A,x(0) + C4A,B,u(0) + C,Byu(1) + Dyu(2)
- Xo v S v,

—_— ~——
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sum of squared error for state-space models

Y g’ U;/la,XBSI\(e‘D& o~ bl gl(\/‘f /;@)
g ?(O) A 4 U(JO) )
y(l) v J u(l)
- = 0x(0)+T .
\ N: 1 = 7) = N: 1
\X( ) )) \u( - )/

Y A )2
For a given estimate of 8, this is the y vector S(Hl, 0, ... Qq)z ()’i — yi)




sum of squared error for state-space models

RV

a Cy )
CoAg

Codp Y

Dy 0 N
Cy By Dy 0

\CQAQI_ZBQ C@Alg_BBQ CQBQ DQ/
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Nonlinear Estimation

ASEN

A |
i<’”\\/ p/ﬂ(,
Let ZN be the given data-set {uy, Xp, k = 1,..., N}

Oy = 6y(Z") = arg gleigSN(B,ZN)

N

Sy(0,ZN) isthesquarederrorie.  Sy(8,2V) = z e, (0) el (0)
k=1

Y N ﬁ(xo)uw"")
ex(0) = y, —y,(08)

Measured ) \\ Predicted (for a particular value of @)
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Non-linear least squares

We will cover the following methods:

1)  Steepest descent (or Gradient descent) and Newton’s method,
2) Gauss Newton and Linearization, and
@ Levenberg-Marquardt's procedure.

N e

1. Ineach case a iterative procedure is used to find the least squares estimators : 91, (92, ..., 0

q
; forthese values are determined.(%é)\l)

2. Thatis an initial estimates,;%.’.: 0’

3. Iteratively find better estimates, @, Hé, 6’; that hopefully converge to the least squares estimates,
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Steepest Descent

* The steepest descent method focuses on determining the values of 6,, 0,, ..., 6’q that
minimize the sum of squares function, S(6,, 6,, ..., Hq).

* The basic idea is to determine from an initial point, 6,, 920, 6’;

and the tangent plane to S(6,, 6,, ..., Hq) at this point, the vector along which the
function S(6,, 6,, ..., 6’q) will be decreasing at the fastest rate.

*The method of steepest descent than moves from this initial point along the direction
of steepest descent until the value of S(6,, 6,, ..., 6’q) stops decreasing.
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Steepest Descent

* It uses this point, ), 9;, 9; as the next approximation to the value that minimizes
S(6, 0, ..., Hq).

* The procedure than continues until the successive approximation arrive at a point
where the sum of squares function, S(6,, 0,, ..., 6’q) is minimized.

* At that point, the tangent plane to S(¢,, 6,, ..., «9q) will be horizontal and there will be
no direction of steepest descent.
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Steepest Descent

To find a local minimum of a function using steepest descent, one takes steps
proportional to the negative of the gradient of the function at the current point.
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Steepest Descent

File Edit  View Insert Tools Desktop Window Help

Steepest descent

| Function:  [(x,7) x.%3-3%xsy. "2 | [_Reset | Iniialx [[NaN, NaN]
*Derivative: |B(x,y) 3*x.~2-3 ' [_Examples | Current x: [Mal, NalM]
y-Derivative: B (x,y) 2%y | | MexiStep | Gradient [NaN, NaN]

1_; / . H\\ ::ﬁ
l l'

L \]\

\\ /// H|
|
I-K““mﬁ_‘; : /1 ,l'//

Infao Left Mouse = Choose start peint {left window). Right Mouse = Access window menus.
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Steepest Descent

Initialize k=0, choose 6,

While k<kpa, Gradient

\

[ |
O = Ox—1 — VF(Ok-1)
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Steepest Descent

Steepest
descent path

\ Initial guess

—
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Glabal minimum af [0 0]

Steepest Descent

Gradient descent is a local optimization method
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Steepest Descent

* While, theoretically, the steepest descent method will converge, it may do so in
practice with agonizing slowness after some rapid initial progress.

* Slow convergence is particularly likely when the S(6,, 6,, ..., ¢9q) contours highly
curved and it happens when the path of steepest descent zigzags slowly up a narrow
ridge, each iteration bringing only a slight reduction in S(&,, 6,, ..., Hq).

* A further disadvantage of the steepest descent method is that it is not scale invariant.

* The steepest descent method is, on the whole, slightly less favored than the
linearization method (described later) but will work satisfactorily for many nonlinear
problems
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Recall: Least squares in general

Most optimization problem can be formulated as a
nonlinear least squares problem

Sorry for being lazy, we have been
denoting Error using e, and

) A
X =argmin_— E (fl (x))2 parametgr 0 , and | just switched
25 the notation to f, and f(x)

¥ =argmin, /(0" /()

Where /: R'>R  j=1,..,m are given functions, and m>=n

Principles of Modeling for CPS — Fall 2020
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Newton’s Method

Quadratic approximation

Fr+ M)~ £+ f/()Ax +%f”(x)Ax2

What’s the minimum solution of the quadratic approximation

A
()
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Newton’s Method

High dimensional case:

F(x+Ax)= F(x)+VF(x)Ax + %AXTH(x)Ax

What's the optimal direction?

Ax =~ —H(x)"'VF(x)
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Terminology

The gradient Vf of a multivariable function is a vector consisting
of the function’s partial derivatives:

of Of
Vi(x,x2) = (8)(1, 8X2>

The Hessian matrix H(f) of a function f(x) is the square matrix of
second-order partial derivatives of f(x):

[ of of '\
8x12 O0x10x
H(f(X]_,X2)) = af 8f

\ 8x1 8X2 8_X22 )
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Newton’s Method

Initialize k=0, choose X,

While k<k___
X, =X, —AH(x)" VF(x,_)
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Newton’s Method

f' (%)

X = X, —
k+1 k f”(xk)

mxinf(x) X1 =X — HLUS

a(x)

f(x)

Xi+1! ' Xy
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Newton’s Method

e
k+1 — *k f”(xk)

——

\\

—

| -,

g

mxinf(x) X1 =X — HLUS

/
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Newton’s Method

Let f(x): R™ - R  be sufficiently smooth

1
Taylor’s approximation: Forclose topoint‘@”  f(x) = f(a) + g'(x —a) + 5 (x —a)TH(x — a) + h.o.t.
\ )
v

=Vf(a H=V?3f(a
I fla) fla) xTHx — 2a"Hx + a"Ha

1
q(x)=§xTHx+ b"x+c where b=g—HTa

Vg=0=>Hx+b=0=>x=-H%=-H'g+a=a-H 1y

x=a—Hlg — xp41=xx — HLVf
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Newton’s Method

Vg=0=Hx+b For minima Vg > 0 Vg =H
Minima if H is PSD

1) Initialize: xg 1) H may fail to be PSD
2) Iterate: Xx41 =X — H 1. g 2) H may not be invertible.

g=Vf(x) H=V(x;) 3) Difficult to compute H in practice
through numerical methods
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Recall: Non-linear least squares

fx) = ‘r' (X) = [lr ()2

”MZ

The j-th component of the vector r(x) is the residual

r](x) =Y — )7} r(x) = (r(x), r2(x), ---:TN(x))T
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Presenter
Presentation Notes
A form of regression where the objective function is the sum of squares of nonlinear functionsType equation here.


Non-linear least squares

The Jacobian J(x) is a matrix of all Vr;j(x):

_Vrl(x)T_

or; vr2(X)T

J — —
) |:8Xi:|j:1,...,N‘;i:1,...,n

v (7.
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A form of regression where the objective function is the sum of squares of nonlinear functionsType equation here.


Non-linear least squares

N

7FGO) = ) (o7 = ]

j=1
N N
7 () = ) TRVEEOT+ ) 107 ()
j=1 J=1

N
= @) + ) 57 ()
j=1
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A form of regression where the objective function is the sum of squares of nonlinear functionsType equation here.


Gauss-Newton Method

Use the approximation V?f; ~ JkTJk

Ji. must have full rank

Requires accurate initial guess N
r : 24,
Fast convergence close to solution J ()T (x) + z 1 () V21 (x)
j=1

\ / Residuals are small when

close to the optimal
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Comparison

Newton

Newton method with line search

gradient < 1e-3 after 15 iterations

* requires computing Hessian
(i.e. n*2 second derivatives)

 exact solution if quadratic

Gauss-Newton

Gauss-Newton method with line search

gradient < 1e-3 after 14 iterations

« approximates Hessian by
Jacobian product

 requires only n first derivatives




Newton’s method cannot use negative curvature

* We can progress if we use a positive definite approximation of the Hessian matrix

of f(x). Xes1 =%, — Hl.g

* One possibility is to approximate H by the identity matrix | (always PD)
* This will be the same as steepest descent:  x;,,; = x;, — Ag
* Too slow, + convergence issues

* Insteaduse H = H;, + Al

* High value of A == steepest (gradient) descent.
e Low value == Newton or Gauss Newton method
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Presentation Notes
The Newton’s Algorithm cannot use negative curvature (when Hk negative definite) inside F(x).


Levenberg-Marquardt Method

e Mixture of Gauss-Newton and Gradient descent.

e Acts like Gauss-Newton when close to the minimum
(quadratic region)

e (Gradient descent when improvement is difficult.
e Depends on a parameter A which

1. Controls the mixture of Gauss-Newton and Gradi-
ent Descent

2. Controls the step-length.
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Contour Line

Increasing
o
\
\
\ Steepest
\.\A 1
. \, descent _
~. 1 . . -~
\ direction P
\ -
\ -~

Decreasing

Newton
direction

lllustration of Levenberg-Marquardt gradient descent
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Levenberg-Marquardt Method

1) Adapt the value of A during the optimization.

2) If the iteration was successful (F(x,,,) < F(x,))
a) Decrease A and try to use as much curvature information as possible.

3) If the previous iteration was unsuccessful (F(x,,,) > F(x,))
a) Increase A and use only basic gradient information.

4) Trust Region Algorithm
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Levenberg-Marquardt Method

el
4= N
3
g 2
1
00 1 2 3 /jl

T
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Levenberg-Marquardt from 3 initial points
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Levenberg-Marquardt from 3 initial points
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Stopping Criteria

Criterion 1: reach the number of iteration specified by the user

K>k

max
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Stopping Criteria

Criterion 1: reach the number of iteration specified by the user

K>k

max

Criterion 2: when the current function value is smaller than a user-
specified threshold

I:(Xk)<0-user
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Stopping Criteria

Criterion 1: reach the number of iteration specified by the user

K>k

max

Criterion 2: when the current function value is smaller than a user-
specified threshold

I:(Xk)<0-user

Criterion 3: when the change of function value is smaller than a user
specified threshold

[ TFOG)-F(Xi2) | | <€user
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Multi-start search

* Several points as 1nitial
guesses for regression and the
regression 1s performed for
each point.

1) Choose randomly..

2) Choose within some
neighborhood of nominal
values.
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NLLS in Matlab

nlinfit

Nonlinear regression

Isgnonlin

Solve nonlinear least-squares (nonlinear data-fitting) problems

Isqgcurvefit

Solve nonlinear curve-fitting (data-fitting) problems in least-squares sense

Madhur Behl madhur.behl@virginia.edu
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Example: nlinfit

Predictor Model function Estimation algorithm
variables (returns predicted labels) options

\ |

[(th,R,J,C0VB,mse] = nlinfit(U,Y,@(th,U)getlabelmodel3(th,U,pass),tho,options);

F i /

Non-linear Response Initial coefficient
regression values values
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Example: nlinfit

Predictor Model function Estimation algorithm
variables (returns predicted labels) options

[th,R,J],COVB,mse:] = nlinfit(u,Y,@(th,U)getlabelmodel3(th,U,pass),thd,options);

b [ Qb Ta Tg Qsol,c Qsol,e Qrad,c Qrad,e Qsol,trans Qconv ]

u
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Example: nlinfit

Predictor Model function Estimation algorithm

variables (returns predicted labels) options

\

[th,R.J,.COVB. msel = nlinfitil.Y . @l Lh*'U)getlabelmodel3(th,u,pass)f th@,options);

C oy ) Cw@©) ) C Cp ) D, 0
y(:l) . 0x(0) 4+ T u(:l) 0 = Ca:Aa T = 59:39 D:B 0
YW -1) =1 oA™Y CoAN™2By CoAN™3By ..CoBy Dy
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Example: nlinfit

Ql :[Cel Cil Ccl Cgl Rel ReZ Ril Ri2 Rcl Rc2 Rgl Rgl Rg2 CeZ Ci2 CcZ Cg2 Re3 Ri3 Rc3 Rg3 ]

[th,R,],C0VB,mse] = nlinfit(U,Y,@(th,U)getlabelmodel3(th,U, pass),the,options);

/

Initial coefficient
values

Non-linear Response
regression values
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