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Parameter estimation
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How to find the values of the parameters ? 
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Previously..



Parameter estimation overview

• Simple Linear Regression

• Least squares

• Non-linear least squares

• State-space sum of squared errors

• Non-linear optimization (estimation) methods 

• Global and local search

• MATLAB implementations
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Simple Linear Regression

Suppose we collect some data and want to 
determine the relation between the observed 
values, y, and the independent variable, x:
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Simple Linear Regression
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β0 and β1 are the parameters of this linear model.

• Don’t know the true values of the parameters. 
• Estimate them using the assumed model and the observations (data)
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Simple Linear Regression
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• Estimate b0 and b1 to obtain the best fit of the simulated values 
to the observations. 

• One method: Minimize sum of squared errors, or residuals.
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Simple Linear Regression
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This results in the normal equations:
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• Solve these equations to obtain expressions for b0 and b1, the parameter estimates that give the best fit 
of the simulated and observed values.
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Linear regression model:                                   , i=1.n   

Linear Regression in Matrix Form
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Presentation Notes
In general 



Linear regression model:                                   , i=1.n   

Linear Regression in Matrix Form
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iii exbby ++=   10 e  bXy +=

• The normal equations (b’ is the vector of least-squares estimates of b):
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Using matrix notation:

Presenter
Presentation Notes
Note that this is a closed form solution…Only depends on the invertibility of XTX matrix..depends on the data..



Ordinary least squares
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𝑛𝑛 × 𝑘𝑘 + 1 𝑘𝑘 + 1 × 1



Ordinary least squares
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Ordinary least squares
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Ordinary least squares
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Linear versus Nonlinear Models
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Linear models: Sensitivities of the output are not a function of the model parameters:
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Presentation Notes
These are sensitivities: derivative of the response function simulated value w/r/t a model parameter. dS/db = f (dy/db), and dy/db are constant for linear model; therefore dS/db is constant no matter what the values of b are.
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Linear versus Nonlinear parameters
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b1 

b2 

S(b) 

• Linear models have elliptical objective function surfaces.

• i.e. the level sets of the objective function (sum of errors 
squared) are ellipsis. 

With two parameter

One step to get to the minimum.

Nonlinear parametric models: Sensitivities 
are a function of the model parameters.

Presenter
Presentation Notes
Obj func surface shown: Nice shape – well defined global minimum, no local minima.
For linear problems, get to minimum of this surface (to optimal values of b0,b1) in just 1 step of solving normal equations.
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Nonlinearity is in parameter space. 
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𝑥𝑥(𝑘𝑘 + 1) = 𝐴𝐴𝜃𝜃 𝑘𝑘 𝑥𝑥(𝑘𝑘) + 𝐵𝐵𝜃𝜃(𝑘𝑘)𝑢𝑢(𝑘𝑘)

𝑦𝑦(𝑘𝑘) = 𝐶𝐶𝜃𝜃 𝑘𝑘 𝑥𝑥(𝑘𝑘) + 𝐷𝐷𝜃𝜃(𝑘𝑘)𝑢𝑢(𝑘𝑘)

Elements of A, B, C, and D could be non-linear in the parameter 𝜃𝜃



Nonlinear Estimation
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Suppose that we have collected data on the output/response Y (n samples),  
◦ (y1, y2, ...yn) 

corresponding to n sets of values of the independent variables/predictors/features 
X1, X2, ... and Xp
◦ (x11, x21, ..., xp1) , 
◦ (x12, x22, ..., xp2), 
◦ ... and
◦ (x1n, x2n, ..., xpn). 



Nonlinear Estimation
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For possible values θ1, θ2, ... , θq of the parameters, the residual sum of 
squares function
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Presenter
Presentation Notes
is the predicted value of the response variable yi from the values of the p independent variables x1i, x2i, ..., xpi using the model f and the values of the parameters q1, q2, ... , qq.




Nonlinear Estimation
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The least squares estimates of θ1, θ2, ... , θq, are values which minimize S(θ1, θ2, ... , θq). 



Nonlinear Estimation
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To find the least squares estimate we need to determine when all the derivatives  S(θ1, θ2, ... , θq) with 
respect to each parameter θ1, θ2, ... and θq are equal to zero.

This will involve, terms with partial derivatives of the non-linear function f. 

𝛿𝛿𝑓𝑓(… )
𝛿𝛿𝜃𝜃1

, 𝛿𝛿𝑓𝑓(… )
𝛿𝛿𝜃𝜃2

, … , 𝛿𝛿𝑓𝑓(… )
𝛿𝛿𝜃𝜃𝑞𝑞



Nonlinear Estimation
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Closed form analytical solutions are not possible. 

𝛿𝛿𝑓𝑓(… )
𝛿𝛿𝜃𝜃1

, 𝛿𝛿𝑓𝑓(… )
𝛿𝛿𝜃𝜃2

, … , 𝛿𝛿𝑓𝑓(… )
𝛿𝛿𝜃𝜃𝑞𝑞

It is usually necessary to develop an iterative technique for solving them

Presenter
Presentation Notes
In a nonlinear system, the derivatives are functions of both the independent variable and the parameters, so these gradient equations do not have a closed solution. Instead, initial values must be chosen for the parameters. Then, the parameters are refined iteratively, that is, the values are obtained by successive approximation



Recall..
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𝑥𝑥(𝑘𝑘 + 1) = 𝐴𝐴𝜃𝜃 𝑘𝑘 𝑥𝑥(𝑘𝑘) + 𝐵𝐵𝜃𝜃(𝑘𝑘)𝑢𝑢(𝑘𝑘)

𝑦𝑦(𝑘𝑘) = 𝐶𝐶𝜃𝜃 𝑘𝑘 𝑥𝑥(𝑘𝑘) + 𝐷𝐷𝜃𝜃(𝑘𝑘)𝑢𝑢(𝑘𝑘)

�𝑦𝑦(𝑘𝑘) = 𝑓𝑓( �𝑥𝑥 𝑘𝑘 ,𝑢𝑢 𝑘𝑘 , �𝜃𝜃1, … , �𝜃𝜃𝑞𝑞)



How can we compute the sum of 
squared error for state-space models ?

Principles of Modeling for CPS – Fall 2020 Madhur Behl madhur.behl@virginia.edu 25

𝑥𝑥(𝑘𝑘 + 1) = 𝐴𝐴𝜃𝜃𝑥𝑥(𝑘𝑘) + 𝐵𝐵𝜃𝜃𝑢𝑢(𝑘𝑘)

𝑦𝑦(𝑘𝑘) = 𝐶𝐶𝜃𝜃 (𝑘𝑘) + 𝐷𝐷𝜃𝜃𝑢𝑢(𝑘𝑘)

Consider the LTI model



sum of squared error for state-space models 
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𝑥𝑥(1) = 𝐴𝐴𝜃𝜃𝑥𝑥(0) + 𝐵𝐵𝜃𝜃𝑢𝑢(0) 𝑦𝑦 1 = 𝐶𝐶𝜃𝜃𝑥𝑥 1 + 𝐷𝐷𝜃𝜃𝑢𝑢(1)

𝑥𝑥 0 = 𝑥𝑥0,𝑎𝑎𝑎𝑎𝑎𝑎 𝑢𝑢 𝑘𝑘 ,𝑘𝑘 = 0, …𝑁𝑁-1Given 

𝑦𝑦(1) = 𝐶𝐶𝜃𝜃𝐴𝐴𝜃𝜃𝑥𝑥(0) + 𝐶𝐶𝜃𝜃𝐵𝐵𝜃𝜃𝑢𝑢 0 + 𝐷𝐷𝜃𝜃𝑢𝑢(1)𝑥𝑥(2) = 𝐴𝐴𝜃𝜃𝑥𝑥(1) + 𝐵𝐵𝜃𝜃𝑢𝑢(1)

𝑥𝑥(2) = 𝐴𝐴𝜃𝜃𝐴𝐴𝜃𝜃𝑥𝑥(0) + 𝐴𝐴𝜃𝜃𝐵𝐵𝜃𝜃𝑢𝑢(0) + 𝐵𝐵𝜃𝜃𝑢𝑢(1) 𝑦𝑦(2) = 𝐶𝐶𝜃𝜃𝑥𝑥(2) + 𝐷𝐷𝜃𝜃𝑢𝑢(2)

𝑦𝑦(2) = 𝐶𝐶𝜃𝜃𝐴𝐴𝜃𝜃𝐴𝐴𝜃𝜃𝑥𝑥(0) + 𝐶𝐶𝜃𝜃𝐴𝐴𝜃𝜃𝐵𝐵𝜃𝜃𝑢𝑢(0) + 𝐶𝐶𝜃𝜃𝐵𝐵𝜃𝜃𝑢𝑢(1) + 𝐷𝐷𝜃𝜃𝑢𝑢(2)

𝑦𝑦 0 = 𝐶𝐶𝜃𝜃𝑥𝑥 0 + 𝐷𝐷𝜃𝜃𝑢𝑢(0)



sum of squared error for state-space models 
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𝑦𝑦(0)
𝑦𝑦(1)
⋮

𝑦𝑦(𝑁𝑁 − 1)

= 𝓞𝓞 𝑥𝑥 0 + 𝓣𝓣

𝑢𝑢(0)
𝑢𝑢(1)
⋮

𝑢𝑢(𝑁𝑁 − 1)

For a given estimate of 𝜃𝜃 , this is the �𝑦𝑦 vector ( ) ( )∑
=

−=
n

i
iiq yy,, ,S

1

2
21 ˆθθθ 



sum of squared error for state-space models 
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𝓞𝓞 =

𝐶𝐶𝜃𝜃
𝐶𝐶𝜃𝜃𝐴𝐴𝜃𝜃
⋮

𝐶𝐶𝜃𝜃𝐴𝐴𝜃𝜃𝑁𝑁−1
𝓣𝓣 =

𝐷𝐷𝜃𝜃 0 …
𝐶𝐶𝜃𝜃𝐵𝐵𝜃𝜃 𝐷𝐷𝜃𝜃 0 …
⋮

𝐶𝐶𝜃𝜃𝐴𝐴𝜃𝜃𝑁𝑁−2𝐵𝐵𝜃𝜃
⋮

𝐶𝐶𝜃𝜃𝐴𝐴𝜃𝜃
𝑁𝑁−3𝐵𝐵𝜃𝜃

⋮
…𝐶𝐶𝜃𝜃𝐵𝐵𝜃𝜃 𝐷𝐷𝜃𝜃



Nonlinear Estimation
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�𝜽𝜽𝑁𝑁 = �𝜽𝜽𝑁𝑁 𝒵𝒵𝑁𝑁 = arg min
𝜽𝜽∈Θ

𝑆𝑆𝑁𝑁(𝜽𝜽,𝒵𝒵𝑁𝑁)

𝒵𝒵𝑁𝑁Let               be the given data-set {𝒖𝒖𝑘𝑘,𝒙𝒙𝟎𝟎, 𝑘𝑘 = 1, … ,𝑁𝑁}

𝑆𝑆𝑁𝑁(𝜽𝜽,𝒵𝒵𝑁𝑁) is the squared error i.e. 𝑆𝑆𝑁𝑁 𝜽𝜽,𝒵𝒵𝑁𝑁 = �
𝑘𝑘=1

𝑁𝑁

𝒆𝒆𝑘𝑘 𝜽𝜽 𝒆𝒆𝑘𝑘𝑇𝑇(𝜽𝜽)

𝒆𝒆𝑘𝑘 𝜽𝜽 = 𝒚𝒚𝑘𝑘 − �𝒚𝒚𝑘𝑘(𝜽𝜽)

Measured Predicted (for a particular value of 𝜽𝜽 ) 



Non-linear least squares
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We will cover the following methods: 

1) Steepest descent (or Gradient descent) and Newton’s method, 
2) Gauss Newton and Linearization, and 
3) Levenberg-Marquardt's procedure.

1. In each case a iterative procedure is used to find the least squares estimators : 

2. That is an initial estimates,                               ,for these values are determined. 

3. Iteratively find better estimates,                            that hopefully converge to the least squares estimates,  

q,, , θθθ ˆˆˆ
21 

00
2

0
1 q,, , θθθ 

i
q

ii ,, , θθθ 21



Steepest Descent 
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• The steepest descent method focuses on determining the values of θ1, θ2, ... , θq that 
minimize the sum of squares function, S(θ1, θ2, ... , θq). 

• The basic idea is to determine from an initial point, 

and the tangent plane to S(θ1, θ2, ... , θq) at this point, the vector along which the 
function S(θ1, θ2, ... , θq) will be decreasing at the fastest rate. 

•The method of steepest descent than moves from this initial point along the direction 
of steepest descent until the value of S(θ1, θ2, ... , θq) stops decreasing.

00
2

0
1 q,, , θθθ 



Steepest Descent 
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• It uses this point,                              as the next approximation to the value that minimizes 
S(θ1, θ2, ... , θq).

• The procedure than continues until the successive approximation arrive at a point 
where the sum of squares function, S(θ1, θ2, ... , θq) is minimized. 

• At that point, the tangent plane to S(θ1, θ2, ... , θq)  will be horizontal and there will be 
no direction of steepest descent.

11
2

1
1 q,, , θθθ 



To find a local minimum of a function using steepest descent, one takes steps 
proportional to the negative of the gradient of the function at the current point. 

Steepest Descent 
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Steepest Descent 
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Initialize k=0, choose 𝜃𝜃0

While k<kmax

Steepest Descent 

𝜃𝜃𝑘𝑘 = 𝜃𝜃𝑘𝑘−1 − 𝛻𝛻𝐹𝐹(𝜃𝜃𝑘𝑘−1)

Gradient 
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Steepest Descent 
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Gradient descent is a local optimization method

37

Steepest Descent 
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Steepest Descent 
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• While, theoretically, the steepest descent method will converge, it may do so in 
practice with agonizing slowness after some rapid initial progress.

• Slow convergence is particularly likely when the S(θ1, θ2, ... , θq) contours  highly 
curved and it happens when the path of steepest descent zigzags slowly up a narrow 
ridge, each iteration bringing only a slight reduction in S(θ1, θ2, ... , θq).

• A further disadvantage of the steepest descent method is that it is not scale invariant. 

• The steepest descent method is, on the whole, slightly less favored than the 
linearization method (described later) but will work satisfactorily for many nonlinear 
problems



Recall: Least squares in general

Most optimization problem can be formulated as a 
nonlinear least squares problem

)()(
2
1minarg xfxfx T

x=∗

∑
=

∗ =
m

i
ix xfx

1

2))((
2
1minarg

Where                         , i=1,…,m are given functions, and m>=n RRf n
i :
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Sorry for being lazy, we have been 
denoting Error using e, and 
parameter 𝜃𝜃 , and I just switched 
the notation to f, and f(x)



Newton’s Method

Quadratic approximation

What’s the minimum solution of the quadratic approximation

2)(
2
1)()()( xxfxxfxfxxf ∆′′+∆′+≈∆+

)(
)(

xf
xfx

′′
′

−=∆
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Newton’s Method

High dimensional case:

What’s the optimal direction?

xxHxxxFxFxxF T ∆∆+∆∇+≈∆+ )(
2
1)()()(

)()( 1 xFxHx ∇−≈∆ −
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Terminology
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Newton’s Method

Initialize k=0, choose x0

While k<kmax

)()( 1
1

1 −
−

− ∇−= kkk xFxHxx λ
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Newton’s Method
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min
𝑥𝑥
𝑓𝑓(𝑥𝑥) 𝑥𝑥𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 −

𝑓𝑓𝑓(𝑥𝑥𝑘𝑘)
𝑓𝑓𝑓𝑓(𝑥𝑥𝑘𝑘) 𝑥𝑥𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 − 𝐻𝐻−1.𝛻𝛻𝛻𝛻

f(x)

xkxk+1

q(x)



Newton’s Method
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min
𝑥𝑥
𝑓𝑓(𝑥𝑥) 𝑥𝑥𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 −

𝑓𝑓𝑓(𝑥𝑥𝑘𝑘)
𝑓𝑓𝑓𝑓(𝑥𝑥𝑘𝑘) 𝑥𝑥𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 − 𝐻𝐻−1.𝛻𝛻𝛻𝛻



Newton’s Method
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𝐿𝐿𝐿𝐿𝐿𝐿 𝑓𝑓 𝑥𝑥 : ℛ𝑛𝑛 → ℛ be  sufficiently smooth

Taylor’s approximation: 𝑓𝑓 𝑥𝑥 ≈ 𝑓𝑓 𝑎𝑎 + 𝑔𝑔𝑇𝑇 𝑥𝑥 − 𝑎𝑎 +
1
2

𝑥𝑥 − 𝑎𝑎 𝑇𝑇𝐻𝐻 𝑥𝑥 − 𝑎𝑎 + ℎ. 𝑜𝑜. 𝑡𝑡.For close to point ‘a’

𝑥𝑥𝑇𝑇𝐻𝐻𝐻𝐻 − 2𝑎𝑎𝑇𝑇𝐻𝐻𝐻𝐻 + 𝑎𝑎𝑇𝑇𝐻𝐻𝐻𝐻
𝑔𝑔 = 𝛻𝛻𝑓𝑓(𝑎𝑎) 𝐻𝐻 = 𝛻𝛻2𝑓𝑓 𝑎𝑎

𝑞𝑞 𝑥𝑥 =
1
2
𝑥𝑥𝑇𝑇𝐻𝐻𝐻𝐻 + 𝑏𝑏𝑇𝑇𝑥𝑥 + 𝑐𝑐 𝑏𝑏 = 𝑔𝑔 − 𝐻𝐻𝐻𝐻𝐻𝐻where

𝛻𝛻𝑞𝑞 = 0 ⇒ 𝐻𝐻𝐻𝐻 + 𝑏𝑏 = 0 ⇒ 𝑥𝑥 = −𝐻𝐻−1𝑏𝑏 = −𝐻𝐻−1𝑔𝑔 + 𝑎𝑎 = 𝑎𝑎 − 𝐻𝐻−1𝑔𝑔

𝑥𝑥 = 𝑎𝑎 − 𝐻𝐻−1𝑔𝑔 𝑥𝑥𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 − 𝐻𝐻−1.𝛻𝛻𝛻𝛻



Newton’s Method
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𝛻𝛻𝑞𝑞 = 0 ⇒ 𝐻𝐻𝐻𝐻 + 𝑏𝑏 𝛻𝛻2𝑞𝑞 > 0For minima 𝛻𝛻2𝑞𝑞 = 𝐻𝐻
Minima if H is PSD

1) Initialize:

2) Iterate: 𝑥𝑥𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 − 𝐻𝐻−1.𝑔𝑔

𝑥𝑥0

𝑔𝑔 = 𝛻𝛻𝛻𝛻(𝑥𝑥𝑘𝑘) 𝐻𝐻 = 𝛻𝛻2𝑓𝑓(𝑥𝑥𝑘𝑘)

1) H may fail to be PSD

2) H may not be invertible.

3) Difficult to compute H in practice 
through numerical methods



Recall: Non-linear least squares

𝑓𝑓 𝑥𝑥 = �
𝑗𝑗=1

𝑁𝑁

𝑟𝑟𝑗𝑗 𝑥𝑥
2

= 𝑟𝑟(𝑥𝑥) 2
2

𝑟𝑟𝑗𝑗 𝑥𝑥 = 𝑦𝑦𝑗𝑗 − �𝑦𝑦𝑗𝑗 𝑟𝑟 𝑥𝑥 = 𝑟𝑟1 𝑥𝑥 , 𝑟𝑟2 𝑥𝑥 , … , 𝑟𝑟𝑁𝑁(𝑥𝑥) 𝑇𝑇

The j-th component of the vector r(x) is the residual
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Presentation Notes
A form of regression where the objective function is the sum of squares of nonlinear functionsType equation here.



Non-linear least squares

N

N
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Presentation Notes
A form of regression where the objective function is the sum of squares of nonlinear functionsType equation here.



Non-linear least squares

𝛻𝛻𝑓𝑓 𝑥𝑥 = �
𝑗𝑗=1

𝑁𝑁

𝑟𝑟𝑗𝑗 𝑥𝑥 𝛻𝛻𝑟𝑟𝑗𝑗 𝑥𝑥 = 𝐽𝐽(𝑥𝑥)𝑇𝑇𝑟𝑟 𝑥𝑥

𝛻𝛻2𝑓𝑓 𝑥𝑥 = �
𝑗𝑗=1

𝑁𝑁

𝛻𝛻𝑟𝑟𝑗𝑗 𝑥𝑥 𝛻𝛻𝑟𝑟𝑗𝑗 𝑥𝑥 𝑇𝑇 + �
𝑗𝑗=1

𝑁𝑁

𝑟𝑟𝑗𝑗 𝑥𝑥 𝛻𝛻2𝑟𝑟𝑗𝑗 𝑥𝑥

= 𝐽𝐽 𝑥𝑥 𝑇𝑇𝐽𝐽(𝑥𝑥) + �
𝑗𝑗=1

𝑁𝑁

𝑟𝑟𝑗𝑗 𝑥𝑥 𝛻𝛻2𝑟𝑟𝑗𝑗 𝑥𝑥
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Gauss-Newton Method

𝐽𝐽 𝑥𝑥 𝑇𝑇𝐽𝐽(𝑥𝑥) + �
𝑗𝑗=1

𝑁𝑁

𝑟𝑟𝑗𝑗 𝑥𝑥 𝛻𝛻2𝑟𝑟𝑗𝑗 𝑥𝑥

Residuals are small when 
close to the optimal
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Newton’s method cannot use negative curvature

• We can progress if we use a positive definite approximation of the Hessian matrix 
of f(x).

• One possibility is to approximate H by the identity matrix I (always PD)
• This will be the same as steepest descent:
• Too slow, + convergence issues

• Instead use �𝐻𝐻 = 𝐻𝐻𝑘𝑘 + 𝜆𝜆𝜆𝜆
• High value of 𝜆𝜆 == steepest (gradient) descent.
• Low value == Newton or Gauss Newton method

𝑥𝑥𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 − 𝐻𝐻−1.𝑔𝑔

𝑥𝑥𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 − ∆𝑔𝑔

Principles of Modeling for CPS – Fall 2020 Madhur Behl madhur.behl@virginia.edu 53

Presenter
Presentation Notes
The Newton’s Algorithm cannot use negative curvature (when Hk negative definite) inside F(x).



Levenberg-Marquardt Method
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Illustration of Levenberg-Marquardt gradient descent

55

Contour Line

Steepest 
descent 
direction

Newton
direction

Increasing

Decreasing

𝜆𝜆
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Levenberg-Marquardt Method

1) Adapt the value of λ during the optimization.

2) If the iteration was successful (F(xk+1) < F(xk))
a) Decrease λ and try to use as much curvature information as possible.

3) If the previous iteration was unsuccessful (F(xk+1) > F(xk))
a) Increase λ and use only basic gradient information.

4) Trust Region Algorithm
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Levenberg-Marquardt Method
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Levenberg-Marquardt from 3 initial points
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Levenberg-Marquardt from 3 initial points
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Stopping Criteria
Criterion 1: reach the number of iteration specified by the user

K>kmax
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Stopping Criteria
Criterion 1: reach the number of iteration specified by the user

Criterion 2:  when the current function value is smaller than a user-
specified threshold

K>kmax

F(xk)<σuser
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Stopping Criteria
Criterion 1: reach the number of iteration specified by the user

Criterion 2:  when the current function value is smaller than a user-
specified threshold

Criterion 3: when the change of function value is smaller than a user 
specified threshold

K>kmax

F(xk)<σuser

||F(xk)-F(xk-1)||<εuser
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Multi-start search
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• Several points as initial 
guesses for regression and the 
regression is performed for 
each point. 

1) Choose randomly..
2) Choose within some 

neighborhood of nominal 
values. 



NLLS in Matlab
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Example: nlinfit
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Example: nlinfit
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Example: nlinfit
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Example: nlinfit
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