Parameter estimation

Lecture 6

Principles of Modeling for Cyber-Physical Systems

Instructor: Madhur Behl

Madhur Behl madhur.behl@virginia.edu



But first..

*Worksheet 3 is out:
* Towards Matlab implementation of the model.
* Nominal values of parameters from EnergyPlus IDF file.
* Specify model structure in Matlab.
* Collect training data.

* Use the templates provided to save time.
* Due in 1.5 week. Thursday, Oct 4, by 2:00pm
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Previously..

How to find the values of the parameters ? T,

1/Uco [Ceiling]
| | I CCi TCO Q'sol,c
1/Ucw
||I Ci Qradec
U,o convection coefficient between the wall and outside air Q Q 11U eoms Loens
: SR sol,e rade ci T, [Windows]
U... conduction coefficient of the wall Qsol2 Qo2
U,i convection coefficient between the wall and zone air 1, e 1 W 1 11U TAAT AN, b
a . e -4 Teo Tel
Uwin conduction coefficient of the window [External MW | 11U
. Internal
(.. thermal capacitance of the wall Wallsl e, Tcs Ci Coo [\;‘V:Irlg?
C'. thermal capacity of zone z; = = = =

g: floor: e: external wall; ¢: ceiling; i: internal wall
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Parameter estimation overview

* Simple Linear Regression

* Least squares

* Non-linear least squares

* State-space sum of squared errors

* Non-linear optimization (estimation) methods
* Global and local search

* MATLAB implementations
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Simple Linear Regression

Suppose we collect some data and want to
determine the relation between the observed

values, y, and the independent variable, x: y

response
(dependent
variable)

We can model the data using a linear model

Yi=Po+Pixi +€

/1NN

observed unknown unknown unknown

response intercept  slope random
error
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X predictor
(independent variable)




Simple Linear Regression

Yi=Po+Prxi +¢€

(©)
/ 1 \ \ y e °
observed unknown unknown unknown °
. response o
response intercept  slope random (dependent o
crror variable) °
(o) (<]
B, and B, are the parameters of this linear model. 0

X predictor
(independent variable)

Don’t know the true values of the parameters.
Estimate them using the assumed model and the observations (data)
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Simple Linear Regression

[ |
Vi =by +bx; +e

/1N N

observed estimate estimate residual
response  of [ of B,

Estimate b, and b, to obtain the best fit of the simulated values
to the observations.

One method: Minimize sum of squared errors, or residuals.
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Simple Linear Regression

simulated values, y;’
|

|
Yi=by+bx; +e y

/1N N

observed estimate estimate residual
response  of [ of B,

Sum of squared residuals: S(b,,b,) = Zel.z = Z(yl. —y!)? :Z (v, —b, —bx)’

s _, oS
ob, oby

To minimize: Set
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Simple Linear Regression

S(bo’b1)2281222(yi_y;)2 :Z(yi_bo_blx)z n n
i=1 i=1 i=1 bon_|_b1 le — Zyl

oS oS — —
Set —— = and —— =0 =1 t=1
ob ob,
n n 0 n
bo 2.x; + by 2.x; = X x;¥;
This results in the normal equations: =1 =1 =1

Solve these equations to obtain expressions for bo and b1, the parameter estimates that give the best fit
of the simulated and observed values.
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Linear Regression in Matrix Form

Linear regression model: V; = bo+bix; +e ,i=tn > y= Xb +e

34| 1 X1 e
=] x<, 7 b{bo} e=|"?
N : D s :
| Vn_ _1 Xn | e, |
vector of matrix of vector of vector of
observed Predictors/ parameters ~ residuals
values features
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Linear Regression in Matrix Form

Linear regression model: V; =by+bix; +€ ,i=t.n > Yy =40 €

The normal equations (b’ is the vector of least-squares estimates of b):

n n
Using bon+by 2 x; = 2 y; Using matrix notation:
summations =1 1=l
x'xp=x"y > p=x"x)"x"y

) n
Xj = 2 Xy

derivativeto 0 [by 2. x; + D
' =1 i=1

1=1 I

And setting the n n
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Ordinary least squares

nxl

-~

This can be rewritten more simply as:
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1 Xu1 Xy Xk

1 X2 Xoo X2

g 1 Xin Xon Xien
y=XB+¢
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nxk

kx1

Jdnxl




Ordinary least squares

e=Y—A B
The sum of squared residuals (RSS) is €’e.

€1

[el . en]lxn - =[el><(31+eg_>><«<32-§-...+¢3,,><e,,]lxl

ke Jdnxl
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Ordinary least squares

The sum of squared residuals (RSS) is €’e.

de = (y—XB)(y— XP)
yy—BX'y—yXB+ X' XS
yy—28X'y+ X' XP
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Ordinary least squares

de = yy—20Xy+BX'Xp

Oe'e

~=—-2X"y+2X'X3=0
Y. Y g

(X'X)8 = X'y B = (X'X)' X'y
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Linear versus Nonlinear Models

Linear models: Sensitivities of the output are not a function of the model parameters:

i =bo +byx; 4

I x S(b)

o 1 x
—~> =1 and ﬁZ)Cl';recall X=: 2

ob, ob,
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Linear versus Nonlinear parameters

Linear models have elliptical objective function surfaces.

i.e. the level sets of the objective function (sum of errors
squared) are ellipsis. A

One step to get to the minimum. S(b)

b?_/v

Nonlinear parametric models: Sensitivities @
b

are a function of the model parameters.

With two parameter
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Nonlinearity is in parameter space.

x(k + 1) = 4,(k)x(k) + B,(k)u(k)

y(k) = Co(k)x (k) + Dy(k)u(k)

Elements of A, B, C, and D could be non-linear in the parameter 6
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Nonlinear Estimation

Suppose that we have collected data on the output/response Y (n samples),
° (Y1, Yor --Yn)

corresponding to n sets of values of the independent variables/predictors/features
Xy Xy .o @nd X,

° (X11) Xa1s +s Xp1)

° (Xq2s X925 +r Xp2)s

° ... and

° (X3ps Xons ++r Xpn)-
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Nonlinear Estimation

For possible values 6, 6,, ..., 6’q of the parameters, the residual sum of
squares function

q): n (v. = 9.) =Zn:[yi—f(xli,x2i, X ,10,,0,, ...,Hq)]z
' i=1

,);i :f(xli"x2i’ "”xpi|91’82’ ""9@)
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Nonlinear Estimation

2
T
o
RS
N —
]
S

(yl. —)A/l.)z = Zn:[yi —f(xh.,le., X ,10,,0,, ...,0, )]2
i=1

i=1

The least squares estimates of 6,, 6,, ..., 6’q, are values which minimize S(6,, 6,, ..., 6’q).

Principles of Modeling for CPS — Fall 2018 Madhur Behl madhur.behl@virginia.edu



Nonlinear Estimation

S

5(9,6’, ...,Qq)z (y,-_J,},-)Z :Zn:[yi_f(xli:xzi’ ...,xpl.|6’1,6’2, ...,(9q):|2
i=l1

i=1

To find the least squares estimate we need to determine when all the derivatives S(é}, 6,, ..., 6,) with
respect to each parameter 6,, 6,, ... and 6, are equal to zero.

This will involve, terms with partial derivatives of the non-linear function f.

S5F(..) SFC.) SF ()
50, ' 86, ' 86,
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Nonlinear Estimation

S5F(..) SFC.) SF ()
50, ' 86, ' 86,

Closed form analytical solutions are not possible.

It is usually necessary to develop an iterative technique for solving them
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Recall..

x(k + 1) = 4,(k)x(k) + B,(k)u(k)

y(k) = Co(k)x (k) + Dy(k)u(k)

!

S;(k) — f(.?lC\(k),U(k), éll ") éq)
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How can we compute the sum of
squared error for state-space models ?

x(k +1) =A,x(k) + Byu(k)
y(k) = Cp (k) + Dyu(k)

Consider the LTI model
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sum of squared error for state-space models

Given x(0) = xg,and u(k),k=1,..N y(0) = Cox(0) + Dyu(0)

x(1) = Agx(0) + Bou(1) y(1) = Cox(1) + +Dgu(1)

x(2) = Agx(1) + Byu(2) y(1) = CyAgx(0) + CyBou(1) + Dgu(1)

x(2) = AyAzx(0) + AyBou(1) + Bou(2) y(2) = Cyx(2) + Dyu(2)

y(Z) —_ CHAQAQ.X'(O) + CQAHBQU(l) + CHBQU(Z) + DQU(Z)
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sum of squared error for state-space models

/

For a given estimate of 0, this is the y vector

y(0)
y(ol)

\

W - D,

= 0x(0)+7T
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" w(0)
u(1)

s(6.6, ...

\

U -1,




sum of squared error for state-space models

 Cyp ) Dy 0 ™

Codp Y \CoAp By CoAy >Byg ..CeBg Dy
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Nonlinear Estimation

Let ZN Dethe given data-set {uy, x9,k =1, ...,N}

Oy = 0y(ZN) = argmin Sy (0, 2V)
9€0
N

Sy(0,ZY) isthesquarederrori.e.  Sy(0,2ZN) = z e, (0) el (0)
k=1

ex(0) = yr — yx(0)

Measured ) \\ Predicted (for a particular value of 8 )
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Non-linear least squares

We will cover the following methods:

1) Steepest descent (or Gradient descent) and Newton’s method,
2) Gauss Newton and Linearization, and
3) Levenberg-Marquardt's procedure.

N N

1. Ineach case a iterative procedure is used to find the least squares estimators : 6,,6,, .

.0

q

2. Thatis an initial estimates, 6,6,, ..., (9; ,for these values are determined.

3. lteratively find better estimates, (91", 6’;, 9; that hopefully converge to the least squares estimates,
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Steepest Descent

* The steepest descent method focuses on determining the values of ,, 6,, ..., Gq that
minimize the sum of squares function, S(6,, 6,, ..., 6’q).

» The basic idea is to determine from an initial point, 8°, Hf, s, 0;

and the tangent plane to S(6,, 6, ..., 6,) at this point, the vector along which the
function S(&,, 6,, ..., Hq) will be decreasing at the fastest rate.

*The method of steepest descent than moves from this initial point along the direction
of steepest descent until the value of S(6,, 6,, ..., Hq) stops decreasing.
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Steepest Descent

* It uses this point, &', 021, e, 9; as the next approximation to the value that minimizes
S(6y, 0, ..., 6,).

* The procedure than continues until the successive approximation arrive at a point
where the sum of squares function, S(6,, 6,, ..., «9q) is minimized.

* At that point, the tangent plane to S(6,, 6,, ..., 6’q) will be horizontal and there will be
no direction of steepest descent.
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Steepest Descent

To find a local minimum of a function using steepest descent, one takes steps
proportional to the negative of the gradient of the function at the current point.
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Steepest Descent

e EM Yew jrsert Joois Desitop Window Hep -
Steepest descent

Fencsen iX,¥) 2. 5-Sexey. "2 [ Resel | ‘s  pNaN MM

sOechvatve.  fix,y) 3oa.°2-3 | Esampies | Current x AN, N

M .':0" J" thatl Slee G‘M"U‘M

11)
‘|""|“J
fF I J

A5 ™

v J |
- A A “AAAA_J

P4
LA Mouwse = Crooee £t pownt Jat winaow | Bort Mowse = ACCem wiNaow Merul
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Steepest Descent

Initialize k=0, choose 6,

While k<k. ., Gradient

\

[ \
O = O0x_1 — VF(Qk—ﬂ
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Steepest Descent

* While, theoretically, the steepest descent method will converge, it may do so in
practice with agonizing slowness after some rapid initial progress.

* Slow convergence is particularly likely when the S(6,, 6,, ..., 6,) contours highly
curved and it happens when the path of steepest descent zigzags slowly up a narrow

ridge, each iteration bringing only a slight reduction in S(6,, 6,, ..., 6,).
* A further disadvantage of the steepest descent method is that it is not scale invariant.

* The steepest descent method is, on the whole, slightly less favored than the
linearization method (described later) but will work satisfactorily for many nonlinear
problems
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Steepest Descent

Steepest
descent path

\ Initial guess

—
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Steepest Descent

Gradient descent is a local optimization method
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Least squares in general

Most optimization problem can be formulated as a
nonlinear least squares problem

x" =argmin_ %i(fl (x))

x" =argmin_ % )" f(x)

Where /f: R'B&R ,i=1,..,m are given functions, and m>=n
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Newton’s Method

Quadratic approximation

For+A) ~ £(x0)+ £ (A +%f”(x)Ax2

What’s the minimum solution of the quadratic approximation

A
()
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Newton’s Method

High dimensional case:

F(x+Ax) = F(x)+VF(x)Ax + % Ax" H (x)Ax

What'’s the optimal direction?

Ax = —H (x)'VF(x)
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Newton’s Method

Initialize k=0, choose x,

While k<k

Max

X, =x,_,—AH (x)_IVF (x,_,)
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Newton’s Method

*Finding the inverse of the Hessian matrix is often expensive

*Approximation methods are often used
* conjugate gradient method

* quasi-newton method
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Newton’s Method

e Et View imsert Tools Desitop Window Hep

Newton's Method

Reset bl 1

Fenen fix) exp(-x)-3
fix) ~expi-x)

- A A V- .

25 2 15 S 05 0
Loft Mouse = Choose o3 pont Rght Mouse = ACCesSS window mens
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Newton’s Method

mxinf(x) X4l = X — ;,,,((J;k)) Xps1 =X, — HLVSf
K

a(x)

f(x)

Xics1! ' X
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Terminology

The gradient Vf of a multivariable function is a vector consisting
of the function’s partial derivatives:

. 0) = (af 6f)

3X1 ! 3X2

The Hessian matrix H(f) of a function f(x) is the square matrix of
second-order partial derivatives of f(x):

of Of
0X2 3X16X2
H(f(x1, x2)) = 5 f‘ ¢

\ 8x1 (9)(2 5)-(23 /
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Newton’s Method

mxinf(x) X4l = X — ]{,,,(();k)) Xps1 =X, — HLVSf
K
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Newton’s Method

Let f(x): R™ - R  be sufficiently smooth

1
Taylor’s approximation: For close topoint‘@®  f(x) = f(a) + g'(x —a) + 5 (x —a)TH(x —a) + h.o.t.
\ 1
|

=V = P2
g=Vf@ H=vf(a) xTHx — 2a’Hx + a’Ha
1
qg(x) = > x"Hx + b'x+c¢ where b=g—Ha

Vg=0=>Hx+b=0=>x=-H 'b=-Hlg+a=a—-H g

x=a—H_1g |:> Xiet+1 = X — H_l.Vf

Principles of Modeling for CPS — Fall 2018 Madhur Behl madhur.behl@virginia.edu



Newton’s Method

Vg=0=Hx+b For minima Vg >0 Vg =H
Minima if H is PSD

1) Initialize: x, 1) H may fail to be PSD
2) Iterate: Xx41 =X — H 1. g 2) H may not be invertible.

g=Vf(xx) H=V*f(xy) 3) Difficult to compute H in practice
through numerical methods
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Recall: Non-linear least squares

fx) = 7‘ (x) = [lr(0)lI2

”MZ

The j-th component of the vector r(x) is the residual

(%) =y = ¥ r(x) = (r1(x), 172(), .., iw(x))"
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Non-linear least squares

The Jacobian J(x) is a matrix of all Vr;(x):

J(x)

|

arj]
axi j:l,...,N ‘;i=1,---’
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PVfl(X)T-
VI’z(X)T

Vr, ()7




Non-linear least squares

N

7fG0) = ) 1COTn) = J )T

j=1
N N
7 () = ) TRVEEOT+ ) 107 ()
=1 =1

N
=T + ) 5T ()
j=1

Madhur Behl madhur.behl@virginia.edu




Gauss-Newton Method

Use the approximation V2f, ~ J/I Jj

Ji. must have full rank

Requires accurate initial guess N
T . 2.
Fast convergence close to solution J G () + 2 T () V7 (x)
=1

\ / Residuals are small when

close to the optimal
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Comparison

A\ \
2 \\:‘.‘:ég":&\

A
A '~'\".('?'-""<-'\

2 & 0 ' 1 2
Futent « 10-) wer 14 ferwtiors

* requires computing Hessian * approximates Hessian by
(i.e. n*2 second derivatives) Jacobian product

» exact solution if quadratic * requires only n first derivatives




Lets talk about curvatures..

Nope, its about
space-time
curvatures

dude.

A% Newton does
Grav1ty. not have a gooo[

It's not just a good idea. f'
Tt the Tave tmcﬁ 1’6(:'01’6[0
acc ountmg fO?’
- o curvatures
g g
@ 9
€ q A
Fg =Gmym,
d2
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Are you serious
right now ! Lets
see you try to
invent calculus..

Newton’s method cannot use negative curvature

J(x) J(x) J(x) J(x)
A A A A
B v
A C D
X —t % =

£a > ga<0 g(-<0 En >0
Hy<0 Hp<0 He> 0 Hy>0

Negative curvature Positive curvature
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Newton’s method cannot use negative curvature

* We can progress if we use a positive definite approximation of the Hessian matrix
f f(x). -
offX). iy =% — H g
* One possibility is to approximate H by the identity matrix | (always PD)

* This will be the same as steepest descent:  x,,.; = x;, — Ag
* Too slow, + convergence issues

* Instead use H = H,, + Al

* High value of A == steepest (gradient) descent.
* Low value == Newton or Gauss Newton method
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Levenberg-Marquardt Method

e Mixture of Gauss-Newton and Gradient descent.

e Acts like Gauss-Newton when close to the minimum
(quadratic region)

e Gradient descent when improvement is difficult.
e Depends on a parameter A which

1. Controls the mixture of Gauss-Newton and Gradi-
ent Descent

2. Controls the step-length.
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Contour Line

Increasing
%
\
\
\  Steepest
\.\ ‘
;1\ ', descent _
~. 1 . . -~
\ direction e
. \ -
Decreasing -~
Newton
direction
- -
-
— -
-
-~
-~
-
P
-
-
-~

lllustration of Levenberg-Marquardt gradient descent
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Levenberg-Marquardt Method

1) Adapt the value of A during the optimization.

2) If the iteration was successful (F(x,,1) < F(x))
a) Decrease A and try to use as much curvature information as possible.

3) If the previous iteration was unsuccessful (F(x,.;) > F(x,))
a) Increase A and use only basic gradient information.

4) Trust Region Algorithm
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Levenberg-Marquardt Method

£ (=)l
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Levenberg-Marquardt from 3 initial points
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Levenberg-Marquardt from 3 initial points

0.3

4

&

3
. 0.2 .
z 2 ’ ’
3’ =
=

1 0.1

0

1 2 3 4 5 6 7 8 9 10 0% 3 4 5 6 7 8 9 10

k
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Stopping Criteria

Criterion 1: reach the number of iteration specified by the user

K>k

max
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Stopping Criteria

Criterion 1: reach the number of iteration specified by the user

I<>kmax

Criterion 2: when the current function value is smaller than a user-
specified threshold

I:(Xk)<0-user
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Stopping Criteria

Criterion 1: reach the number of iteration specified by the user

I<>kmax

Criterion 2: when the current function value is smaller than a user-
specified threshold

I:(Xk)<0-user

Criterion 3: when the change of function value is smaller than a user
specified threshold

| | F(Xk)'F(Xk-l)l |<Euser
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Multi-start search

* Several points as initial
guesses for regression and the
regression 1s performed for
each point.

1) Choose randomly..

2) Choose within some
neighborhood of nominal
values.
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NLLS in Matlab

nlinfit

Nonlinear regression

Isgnonlin

Solve nonlinear least-squares (nonlinear data-fitting) problems

Isgcurvefit

Solve nonlinear curve-fitting (data-fitting) problems in least-squares sense
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Example: nlinfit

Predictor Model function Estimation algorithm
variables \ (returns predicted labels) options

[th,R,],COVB,mse] = nlinfit(U,Y,@(th,U)getlabelmodel3(th,U,pass),thd,options);

/N /

Non-linear Response Initial coefficient
regression values values
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Example: nlinfit

Predictor

variables \

] = nlinfit(u,’,

- ; ; : : y g :
ub_[ Qb Ta Tg Qsol,c Qsol,e Qrad,c Qrad,e Qsol,trans Qconv ]
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Example: nlinfit

Model function
(returns predicted labels)

X

“'U)getlabelmodel3(th,U,pass)

C 0 ) Cu©) ) © G ) Do 0
y (51) = 0x(0)+ 7T “(51) O = CO:AO T = C":Be D:G 0:
\y(N - l)j &(N - 1)/ \CgAlg_b CgAg_ng CgAg_3Bg Cng Dg
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Example: nlinfit

HI =[Cel Cil Ccl C 2 Rzl R12 ¢l Rc2 Rgl Rg2 Ce2 Ci2 Cc2 Cg2 Re3 Ri3 Rc3 Rg3 ]

- pass),tho,opt

/

Initial coefficient
values
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