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Lecture 4

Principles of Modeling for Cyber-Physical Systems

Instructor: Madhur Behl
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In today’s lecture..

* Heat transfer basics

* Thermal gains

* Single zone ‘RC’ network model
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Recall: HVAC zone control

supply air heat gain
set-point reheat 1 l
‘| Thermostat 1 vav | Zone
damper
zone temperature
Sensor |-

How to model the dynamics of the zone, for better control ?
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Heat transfer concepts

» Heat Q: energy transferred across system boundary by temperature
difference (J).

» Heat flow (rate) Q: heat transfer rate (W).

» Heat flux: heat flow rate through a surface. Heat flux density is
heat flux per unit area (W/m?).
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Heat transfer concepts

» Heat capacity C: heat needed to raise temperature of a body mass
by 1°C (J/K). Also called thermal mass, thermal capacitance.

» Specific heat (capacity) C,: heat needed to raise temperature of
1 kg of material by 1°C (J/kg K); C = mC, = pVC,.

» Energy change by temperature change AE = pVC,AT.

» Mass flow rate m (kg/s) and volume flow rate V (m?/s);
m=pV.
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Heat transfer 101

If a mass m, of a substance is heated from temperature T, to T,, the
amount of heat H which it acquires is given by:

H=mC,(T, —T,)

where C, is the specific heat of the substance
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Conservation of energy

Heat balance equation: H - W = AE

Heat H Energy input to the system.
Work W Energy extracted from the system.

Internal heat E Energy stored in the system
(can only measure/calculate its change).

Heat input —— Zone — Heat extracted

(Supply air, radiation, , (Conduction, in-
internal heat gain, etc.) (Zone air) filtration, etc.)
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HVAC Zone heating

Supply air temperature T, return air temperature T, < Ts, volume flow
rate V. Heat transfer to the zone is:

Q=FH=lVe(T.-T) (W)

Heat flow
mass flow rate..
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Zone Cooling

Similarly, with Ts < T,, heat extracted from the zone is:

Q=W=pVC(T,-T;) (W)
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Components of Building Heat Loss and Gain

Q, o * Gains
f1 Building envelop. * Heat flows in...
: J | * Losses
Qsor /1:7 * Heat flows out...
T' \\ T, w, < Y * Sensible gain/cooling:
4 ~~ Eing * Change the temperature of
0w \ , N~ the interior air.
T Qg * Latent gain/cooling:
Q. | e Change the humidity level
Qfll of the interior air.
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Components of Building Heat Loss and Gain

Qrf1 Build | * Heat flows through:
uilding envelop.
 Walls
: J | * Windows
Q /1:7 * Doors
%
N T, w, . * Roof
Tqa wy N Einf e Floor
Qwa \ "~ * Internal heat gain
T Qg e Lights
Qw i * Occupants
Qs * Equipment
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Mechanisms of heat transfer

A

'

Radiation Conduction Convection
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Conduction — A touching story of heat transfer

Conduction is the process of heat transfer through a substance such as a
wall, from higher to lower temperature.

Fourier's equation (3-dimensional PDE with time):

dT [62T PT FT

e = et o T o2

where k: thermal conductivity ( W/mK).
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Heat Transfer: Conduction

Simplified equation (timeless, one-dimensional):

T .
Q—kAAx = /

where A: cross-sectional area (m?), Tj: high temperature, T;: low
temperature, /: thickness/length of material.
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Heat Transfer: Conduction

Temperature (K)

2123 400 AN S0 &40 17315
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Conduction though a wall

L Property of the geometry

Property of the material
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Recall: Generalized resistance

Heat flow Q
generalized through variable
/\/ V = Rf W
generalized across variable generallzed resistance

Temperature T

Principles of Modeling for CPS — Fall 2018 Madhur Behl madhur.behl@virginia.edu



Heat Transfer: Conduction

Define Ry, = 75 (thermal resistance) then

Through Variable th = @ Across Variable

Equivalent to an electric circuit: T = potential, AT = voltage, Q =
current, R,, = resistance.
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Composite wall

R, R, R,
AA—AA—AA—

—AA—AA—AA—

Ry Rs Re

Equivalent to

1
Ry =
—\NV— KR1 + Rl2 + R3) i (R4 + Rl5 + R6)]
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Heat Transfer: Convection

Convection is the heat transfer between a surface and fluid/gas by the
movement of the fluid/gas.

» Natural convection: heat transfer from a radiator to room air.

» Forced convection: from a heat exchanger to fluid being pumped
through.
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Heat Transfer: Convection

Second law (of thermodynamics)

Newton's law of cooling: @ = hAAT

where h: heat transfer coefficient ( W/ m? K?); A: surface area (m?),
AT: temperature difference between surface and fluid.

Define|Re, = 4 fand write QR., = AT.

. R Property of the geometry
Q cv

Property of the material
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Heat Transfer: Radiation

Radiation is the heat transfer through space by electromagnetic waves.
Example: radiation between a radiator and a wall that faces it.

Fourth-order equation given by the Stefan-Boltzman law (cf. heat
transfer textbooks).

Approximate linearized equation:

Q = eh A(Ty — T>)

where ¢: emissivity of the surface (0.9 for most building materials); h,:
radiation heat transfer coefficient ( W/ m? K?).
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Heat Transfer: Radiation

7 Hrs later

By early evening the
indoor temp.has risen
to>25°C

N

Solar radiation heats \
&m’% brick surface to 45° C \:

Ambient air temp.at 30° C\

Direct Indirect

Ommo0wnmp

Conventional timber frame
construction with brick outer
leaf and mineral wool
insulation
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Heat Transfer: Radiation

Define R, = # and write QR, = AT.
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Recall: Generalized Capacitance

Temperature T

: generalized across variable

generalized through variable

: generalized capacitance
Heat flow Q
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Thermal Mass

C dTmaterial _
thermal mass of material volume dt — Qnet loss/gain
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To model a single zone:

1. To predict...

Zone temperature.
Zone humidity.
Electricity
consumption/demand.
Energy consumption/demand.
Cooling load
Heating load

Conductive heat gain
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To model a single zone:

We could model

Lo Mo Sy o : ;.\ 1 Solar .
Appliance gain / ] | Iradiation * HVAC equipment.

* Building envelop.

Conductive heat gain
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To model a single zone:

1. Construction:
1. Material properties

2. Geometry:
1. Surface Areas,
2. Surface thickness
3. Volume

3. Operation:
1. Internal heat gains
2. HVAC cooling/heating
3. Outside air
4. Solar heat gain

Conductive heat gain
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Single zone: Surfaces

Principles of Modeling for CPS — Fall 2018

Conductive heat gain

Solar
liradiation
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5.

External Walls:

1. Outside surface of
external wall — Ambient
temperature.

2. Inside surface of external
wall — Zone temp.

Ceiling:

1. Out surf : Ambient temp,
or floor of the zone
above.

2. Special case: Plenum

3. Insurface: zone temp

Floor:

1. Out surf: Ground temp, or
zone below..

2. Insurface: zone temp

Internal Walls:
1. With adjacent zones.
Windows/Doors




Single zone:
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Conductive heat gain

eat Gains

Madhur Behl madhur.behl@virginia.edu

liradiation 4 .

. Solar Irradiance Q. :

1. External wall
2. Ceiling

. Solar radiation transmitted

through windows Qg
1. Absorbed by zone air, and internal
surfaces.

. Radiative internal heat gain Q,.4:

1. Distributed evenly on all internal
surfaces.

Convective heat gain Qconv:
1. With adjacent zones.

. HVAC heat gain Quyac OF Qqene
. Boundary temperatures:

1. Outside air temp.
2. Other zones




Internal heat gains

Occupants Lighting Appliances/Equipment

/(C:\ - Evaporation
W x A

: \ ~
Convection

Radiative E Z» m Convective
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Radiative . Convective
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All in all, its just heat transfer through the wall

Shortwave radiation, O —
including direct, Room | Shortwave radiation from
reflected, and diffuse B i solar and internal sources
sunlight

into wall,

/ Longwave radiation

<¢— exchange with other

\ surfaces in zone
- Conduction Longwave radiation from

Longwave radiation

from the ——P

environment 3
.............. % from Salal
Convective exchange | [ pmmm——— 00 3 ’ i internal sources
ith outsid . = trusaRtanels E;OUts“’es qki BEEEE
TR e A ' | Convective heat exchange
Outside [.iiiinnnnniiinin st i with zone air
el $HE I R It i s
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One layer slab: 3R2C

One layer slab:

 Two interior nodes, for each

To  /\ Ty Tz /\ 1z
ik R :( i Su rfa ce
C

3£ T, T,
T  Convection on both sides.
|
= N "o T
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Assumptions

* Air inside is well mixed.

* One dimensional heat transfer is
assumed for the walls and
surfaces..

* No lateral temperature
differences.

%

.
.

SFLIR
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Assumptions

k) brion: Control &
3k sestl implementation
Verification
Modeling \

Discretization

Mathematical \ —errors ——/ Computational/
Observations models Simulation
models
Validation
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One layer slab: 3R2C

Principles of Modeling for CPS — Fall 2018

Why are resistors, capacitors, and

temperature elements floating and not
grounded in this diagram ?

/\/—2 Interior . Inner Wall  Outer Wall
i i q . T : T |

Ambient
A AW AW
R3 | R, R
T, C’:) I I Ct) Ti
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T

lts convenient



One layer slab: 3R2C

| A dT} Ta—13
| T o
i = hA(TO Tl) 4 R + GsourceA
' o
qsourcd C@- - hA(Tz — T2) + Tl T2
To /\/ T T2 1z dt i
hA | hA
C= | C=
} | ) R —_ i ’
' kA Heat flux, W/m?2
qsource- , ,
L \ C B pcpfA e.g. solar irradiance
2 1
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SR2C — A closer look

N_Conduction 4
|
|
dT 15 — T
qmmu: d_tl = hA(To E= Tl) 4 - R £ 4 QsourceA
T, Ty T> 1z
. @ dT. s R
T‘/'J}/ R/:\/:( F/k\/ '?i'tzzhA(Tz—TB)‘F lR
. C_ | C_ .
Convection = ' = Convection Thermal Mass Convection Conduction
|
/* Y

Thermal Mass
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Announcements

* Install EnergyPlus before the next lecture on Thursday, September 20.
* https://energyplus.net/

* Whole building energy simulator

* Optional:
* Create an account at https://usonialabs.com/
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https://energyplus.net/
https://usonialabs.com/

Assignment 2 Is out

* Thermal RC modeling for a single zone.

* Due in 1 week: Tuesday, Sep 25 at 2:00pm

* No programming parts

* If you are submitting an electronic copy on collab:

* Upload a single PDF file only.

* Use the following filename format: <FirstName_LastName_UVA-ID>.pdf
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/Zone temperature dynamics

. dTi B Ty — T4
N I A Quyac Cﬂ — hA(To = Tl) o R + QSourceA
| dTs T, — T5
—_— = A Tz - T

&

Nr— )
il R i |
hA hA

C = p—

Q; dTy ) '
hg CZE = hA(T, —T;) + Qing + Quvac
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/Zone temperature dynamics

dT’ Ty — T
Cd_l = hA(To - Tl) -+ 2 R . -+ qsourceA dT, . .
dflfg T, C,—> = hA(Tz = Tz) + Qing + Quvac
CE=hA(Tz—T2)+ R
States: T1: Tz , TZ Parameters (unknown)

Inputs: To, Qsourced .Qihgr Quvac h,R,A,C,C,
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State-Space dynamics

dT)
O
dTs

CFH

= hA(T, — T) + f2— 0 + GsourceA dr.
n RT C,—= = hA(T,
= hA(T, - T) + 22
R

Cha 1 1 N 4
N f——— — 0| §y |RA 1
i ~hd_ 1 hA|[}] g g
.2 _ RC C RC RC T2
'z, 0 ha —hAI 7] |0 O

C C
\_ z "2/ \_

Principles of Modeling for CPS — Fall 2018
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—Ty) + Qing + Quvac

Do o
\Nﬁlp—\c )

Ty )
q So.urceA

Qing

KQ.HVACJ




State-Space dynamics

Which variables are
changing with time?

T1 C . RC
217 Rre

I,

\ y O
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x = Ax + Bu
L N
E fT\ e
~hA 1 hA Tl . g
C RC RC Tz
hA —hA[ | 7] |0
C C
g 2/ \_
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S o0+

~ To )
Isourced

Qing

Do o

\ D|re = J

\Q.HVACJ




' s thi t LTI ?
State—Space dynamICS s this system

x(t) = Ax(t) + Bu(t)

4 )
[hA 1 1 \
_ — 0 r N h4A 1 ( To(t)
(Tl.(t)\ ¢ 1 RC _hlfc 1 hA L@®| [c ¢ g g QSou:ce(t)A
O w ¢ "RC RC ;283 Ho 0 1 1|| Qing®
\Tz(t) ) 0 hA —hAl(%>7) |00 c, C,| \Quvac(t) )
_ Y - Y




Output equation

y(t) = Cx(t) + Du(t)

T,(t) =10 0 1]

(T1 (t;
T, (t)

¢o)

( To(t) )
qso.urce (t)A
Qihg (t)

\QHVAC (t) )




To model a single zone:

Great!, | know how to model an external wall.
(external because, the outside boundary was
ambient temperature)

But what about

Floor,
Ceiling,
Windows,
Other ‘internal’ walls

Conductive heat gain
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To model a single zone:

Meo  1/Ugy 1/Uq;

imadiation  [External 6&/
Walls] Cos Cu Y
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External Wall : Convenient notations

[External
Walls]

liradiation

Rconvective resistance —

Rthermai resistance U _
thermal conduction

hA U convective conduction

Principles of Modeling for CPS — Fall 2018 Madhur Behl madhur.behl@virginia.edu



External Wall : Convenient notations




Cei\ings — from a modeling perspective

“We are walls too”

o o - Ceilings
= (since forever)
Solar
liraciation
“.s0 are we..”
Conductive heat galn
- Floors
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Cei\ings (..floors..internal walls..) -

[Ceiling]

<X Q sol,c
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Windows (little to no thermal mass — only thermal resistance)
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Plenums — from 3 modeling perspective

Tp
Active / Circulating
Plenum Airspace Forced-Air Supply<—
<— Forced-Air Return J |
1 4 L
Vs [ 1/U,
Drop
Ceiling
Living / working space of a typical
commercial building Tz
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RC modeling methodology

1. All exterior walls are combined into a single exterior wall.
a. External boundary condition: Outside air temperature, Incident solar irradiation.

2. Windows/doors (without thermal mass) — Resistive element.

3. Ground and ceiling with appropriate boundary conditions.
a. Another zone, ground temperature, outside temperature, plenum.

4. Internal walls for adjacent zones, and/or partitions.

5. Inputs:
a. Heat gains to the zone temperature,

b. Solarirradiance,
c. All boundary temperatures
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G ray bOX 1/Uco [Ceiling]

CCi TCO Q'sol (o]

modeling: “rc- .

” Cei . Qrrage
N EtWO rkS | Tei Q conv + Q'sens

T, [Windows]
'solt/ 2 Q'solt/ 2

Tio ;
A TAAN

/g/ 1/U; 1/U;o
C,
Y C. c [Internal

o Walls]

[External
Walls]

Every surface is a ‘RC’
branch in the network
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Every surface is a ‘RC’
branch in the network

Ta
1/Uco [Ceiling]
Ill Ca Teo Q'sol,c
/U
'” Cei - Q'rad,cQ. Q
Branch heat balance equations [3R2C] Qe  Quae  MWsS T, Windows]
Qo2 |Qsorl2
I Mo | e 11Uq Win |1 1, T
T.
[External | = ¢ Wi | W | Uk
el J:% J:e‘ 1/Ug &/ l l [w:ﬂ:]al
Quadg Ti I||
1/Ugy i
Ceoleoft) = co(T (t) = Teo(t)) + Uew(Tei(t) — Teo(t)) + Qsot,e(t) TQOCQ" i
CeiTet(t) ew(Teo(t) — Tei(t)) + Uei(T:(t) — Tei(t)) + Qrad e(t) e [Floor]
o loa() co(Ta(t) = Teo(t)) + Ucw (Tei(t) = Teo(t)) + Qsot,e(t) g
CciTci(t) - Ucw(Tco(t) e Tci(t)) + Uci(Tz(t) = Tc:(t)) S Qrad,c(t)
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Every surface is a ‘RC’ -
branch in the network 1/%%

Zone heat balance equation

External Wall Ceiling
Csz (t) — Uei(Tei(t) T Tz (t)) T Uci(Tci (t) o Tz (t)) Floor
zone A + Uss(Ti(t) — To(2)) + Ugs(Tyi(t) — Tx(2)
mass Internal Wall + Uwz‘n(Ta (t) B Tz (t)) + Qconv (t) + Q'sens (t)
Windows

Heat Gains/Losses

Madhur Behl madhur.behl@virginia.edu



Gray box modeling:
“RC-Networks”

1MUeo<Z  [Ceiling]
'll CCi Ico Q"sol,c
o Wa
All the heat balance equations = Qrad,cQ_ o
conv + sens
Braches + zone temperature Qsde  Qrage T, [Windows]
'solt/ 2 Q'solt/ 2
1/U 1/U 1/Uq T
Ta eo ew ei i i0, Ti
[External MW | 1o
Walls] _ [Internal
Ceo Cel Cio Wa"s]
Q'rad,g

S 8
||
=
G
_I._
-
Q

I~
=

Madhur Behl madhur.behl@virginia.edu
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Gray box modeling:
“RC-Networks”

ci
Q'soe Qrade ci T, [Windows]
Qsan2

T;

1/
[Internal
Walls]

T, Meo | Wy

States : All nodes of the network except boundary nodes (Externat |~ |™

Walls] ?{) iiei
B T ..
Xr = [T607 L o5 ok con Lok Tgm Tgi7 Loy Lk Tz]

Cio

Inputs: All boundary conditions and heat gains.

U = [Taa Tga Tz’a Qsol,ea Qsol,ca Qrad,ea Q'rad,ca Qrad,ga Qsolta Qconva Qsens]T

Parameters: The resistances/conductances and capacitances

0 = [U607 Uew, Ui, - - - Cio, C“]T
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Gray box modeling:
“RC-Networks”

ns
Qsoe  Qrage T, [Windows]
Q'solt/2 Q‘solt/2
1/U 1/U i T
Teo MW | M
[External _ |
Wall I — Internal
a S] Ceo ei Cio [Walls]

Inputs:
1. Disturbances : Non-manipulated variables
2. Control: Manipulated variables

U = [Taa Tga Tz’a Qsol,ea Qsol,m Q'rad,ea Qrad,ca Q'rad,gv Qsolta @ conv

Pro(gramming) Tip | : Convention to order control inputs at the end of the input vector
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A closer look at the heating/cooling input

supply air heat gain

- . ' Q =m,c, .T, —-T )
set-point reheat 2 _— .
— = = sens sup™ p,air \* sup zone
damper (’
zone temperature Se | o

Assuming return air temperature is the same as zone air temperature.
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Zone heat balance equation

C.T. (1) = Ui(Tia(@®) — To(0)) + Usi(Tui(t) — T (t))
+ Uzz(Tzz(t) — Tz (t)) Ugi(ng’(t) — Tz (t))
+ Upin(Ta(t) — T2 (t)) + Qeonv(t)

+ msup Cp,air (Tsup o TZ)
x = Ax + Bu

Inputs: All boundary conditions and heat gains.

u = [Ta, Tg, Ti, Qsol,67 Qsol,m Qrad,ea Qrad,ca Qrad,ga Qsolta Qconva msupr Tsup ]T
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Zone heat balance equation

C.T. (1) = Ui(Tia(@®) — To(0)) + Usi(Tui(t) — T (t))
+ Usii(T3i(t) — T(8) + Ugi(T4i(8) — T (2))
Uwin (Ta (t) - Tz (t)) Qcon‘v (t)

+ msup Cp,air (Tsup o Tz)

Model has become non-linear (bi-linear) !
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Modeling complexity depends on the purpose

Lets say you had to model this one zone on the second level of the building
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Modeling choices

1. Does every internal wall require its own
RC branch ?

2. What about windows which maybe the
same material but face different
directions ?

. Do doors have thermal mass ?

4. How do you compute the total internal

heat gain at any time ?

W
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Recall: Single zone: Heat Gains

Principles of Modeling for CPS — Fall 2018

Conductive heat gain

Madhur Behl madhur.behl@virginia.edu

o v o> w

. Solar Irradiance Q. :

. Solar radiation transmitted

through windows Qg ;:

. Radiative internal heat gain Q,.4:

Convective heat gain Qconv:
HVAC heat gain Quyac OF Qs

Boundary temperatures:




Sensible Heat Gain from People

e T=15 6C (60F)
w—T=21 1C (70F)

Heat gain from occupants  Fpas | o
2 Srmipen W Pub T=23.9C (75F)
: 2| ——T278c82)
3 W Pub T=27 5C (82F)
8 : - T=32.2C (90F)
g
$ & _E
g § — —
» Metabolic rate, adult female = Metabolic rate, adult male X 0.85 g I , - .;.,. .._—f/“l""r;;/
» Metabolic rate, children = Metabolic rate, adult male X 0.75 -___'__
o 10 150 20 25 30 3% 40

Average Adjusted Metabolic Rate (W)

S = 6.461927 + .946892M + .0000255737M? + 7.139322T — .0627909T M
+.0000589172T M? — .1985507"% + .0009400187*M — 0000014953272 M?

where
M = Metabolic Rate (W) T = Air Temperature (C)
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Heat gain from occupants

Total Heat Adusted” | Sensible Heat Latont Heat
1 | Soated at rest Theatre, mavie 100 350 60 |20 |40 |10
2 | Seated, very light writing Office, hotels, apartments | 120 420 6 |20 |55 |1%0
3 | Seated, eating Restaurant’ 170 580 75 |265 |es 325
4 Seated, ight work, typing Offices, holeis, apartments | 150 510 75 255 75 255
5 | Standing. ight work, or walking skowly Retad Store, bank 185 640 2 |35 |95 |35
8 | gt bench work Factory 230 780 100 |345 |130 |435
7 "{m""‘mm;:&w’ Factory 305 1040 100 |345 |205 |e95
B Bowing" Bowling aley 280 960 100 | 345 180 | 615
9 | moderate dancing Dance hall 375 1280 |120 |405 |255 |875
10 m e e Factory 470 1600 165 |565 |300 |1035
11 | Heavy work, athiatics Gymnasium 528 1800 185 635 |30 1188
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Single zone: Heat flows

Cooling load

T

Solar
irradiance

Convective
y \

Convective
/ Radiative Inte-rnal
gains

Ambient air ) Radiative
temperature Interior
Structure Sol ,
Envelope i < olar gains
gainsp Furnishings Radiative

Principles of Modeling for CPS — Fall 2018 Madhur Behl madhur.behl@virginia.edu



Modeling choices

1. Does every internal wall require its own
RC branch ?

2. What about windows which maybe the
same material bur face different
directions ?

. Do doors have thermal mass ?

4. How do you compute the total internal

heat gain at any time ?

5. How are wall temperatures and

incident solar irradiance measured ?

W
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Measuring solar irradiance.

Designed to measure the solar
radiation flux density (W/m?2)

Vertical

Zenith angle
E |=90-7,

Altitude Horizontal
N Azimuth S
L a‘ -
Ground plane

w

Pyranometer
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Multi-zone RC network
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Multi-zone RC network




Alternate representation

ngl,ext
\\
T " Tzone Qg i e
o A st
S BExt° L / I
Qsol,trans h I Tzone,adj
Tgrd / T Cell T
= o Flr T '_ _____ l
Q/gain,rad A Qsen+anin,conv
Tzone & p’/
T Int T
Tamb
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Alternate
representation

Zoned
X XL  Ext

L I Int

2 I Ceil
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Energy CPS modeling assignments
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Module 1 modeling assignments

* Assignment 2:
e Create the RC model structure.

* Assignment 3:
 Nominal values of model parameters.
 Model structure in Matlab
* Training data set.

* Assignment 4:
* Parameter tuning in Matlab.
* Model validation.
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Assignment 2

T NN TN S_— — B N S U S —— S N— R S_— - E—— I S — - —"
-
.

e .

- s -

- - » g
=4 : o 1V

Principles of Modeling for CPS — Fall 2018 Madhur Behl madhur.behl@virginia.edu




SPACE3-1: Inputs

[—

Ground Temperature, Ty (°C)

Outside ambient temperature, T, (°C)

o

Return air plenum temperature, T), (°C)

4. Total external solar heat gain, Qgo1,¢ (W)

5. Total internal heat gain, Qgqaipn (W)

6. Total sensible cooling load, Qg0 (W)

7. Neighboring zone temperatures for SPACE2-1 T, SPACE4-1 T}, SPACES-1 T5 (°C)
8. SPACE3-1 zone temperature, T (°C)
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How to find the values of the parameters ?

U< [Ceiling]
||I Ca Too Q'solc
1/Uqy
U,, convection coefficient between the wall and outside air 1l Ca Q“""’Q_CW Qo

U.., conduction coefficient of the wall Qoo Qrage T, [Windows]
U,i convection coefficient between the wall and zone air Qea'2 | Waa/2
Uwin conduction coefficient of the window Py T;/er T v WJ\N\F\I
Cs»  thermal capacitance of the wall ['f,’\‘,z[:]a' 1 1’:‘;:temal
C, thermal capacity of zone z; _f% _fe' __Cio Walls]
g: floor: e: external wall: ¢: ceiling: #: internal wall - - Qe :
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Next lecture:

* Intro to whole building simulation.
* White-box vs Grey-box

* EnergyPlus tutorial and demo
» working with IDF files
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