

Cyber-Physical Energy Systems

LECTURE 3

PRINCIPLES OF MODELING FOR CYBER-PHYSICAL SYSTEMS

INSTRUCTOR: MADHUR BEHL

Tea Time In Britain

Peaks occur during major sporting events

About 2,060,000 results (0.75 seconds)

111 million people

More than **111 million people** watched Super Bowl LI. Feb 6, 2017

Price Volatility: Summer peak

Principles of modeling for CPS – Fall 2018

Price volatility is the new normal

PJM (ISO) Locational Marginal Prices (LMPs) example

Peak Demand is Expensive!

Demand is off the charts! Fares have increased to get more Ubers on the road.

Peak Demand is Expensive!

Peak Demand is Expensive!

Principles of modeling for CPS – Fall 2018

MADHUR BEHL - MADHUR.BEHL@VIRGINIA.EDU *New combined cycles are more fuel efficient.

9

Total electricity generation capacity in U.S. 1190 GW

Total electricity generation capacity in U.S. 1190 GW

1 Large Hadron Collider Peak demand 200 MW

Total electricity generation capacity in U.S. 1190 GW

5,950 LHCs Running at the same time

1 Large Hadron Collider Peak demand 200 MW

10,000,000 simultaneous superchargers at peak capacity

"All kilowatts are not created equally"

Demand Response

Principles of modeling for CPS – Fall 2018

Imagine getting paid for doing nothing

Imagine getting paid for doing nothing

MADHUR BEHL - MADHUR.BEHL@VIRGINIA.EDU

Imagine getting paid, or otherwise compensated, for not using electricity during peak hours!

A Demand Response Event

Demand Response – Looks familiar

This Flight is Scheduled To Be Full Passengers Interested in Volunteering For Compensation Please Advise The Check-in Representative

VOLUNTEERS ARE NEEDED

NYC-KENNEDY, NY > LOS ANGELES, CA 29 JUN 2014

Do you want to be added to the volunteer list for your flight departing from NYC-Kennedy, NY to Los Angeles, CA? We are seeking volunteers willing to take a different flight in exchange for a travel voucher redeemable within 1 year on delta.com.

Your existing itinerary will not be changed until you review alternate flights at the departure gate.

Select the dollar value of the travel voucher you would accept as compensation for volunteering your seat. **Note:** If your seat is needed, you will receive a travel voucher for this amount.

NO THANKS

Q) If you don't know what's going to happen when you change a set-point. How do you even know the change is worth making ?

Q) What is the best change that you can make right now ?

What kind of models ?

Principles of modeling for CPS – Fall 2018

The control problem in buildings

Integrated control of:

- Heating
- Cooling
- Ventilation
- Lighting
- Blinds

Model Predictive Control (MPC)

- \rightarrow Determine state x(t)
 - Determine optimal sequence of inputs over horizon
 - Implement first input *u*(*t*)
 - Wait for next sampling time; *t*:= *t* +1

Generation, Transmission, Distribution: Supply-side

Source: Adapted from National Energy Education Development Project (public domain)

Modeling the grid dynamics ?

Principles of modeling for CPS – Fall 2018

Modeling the grid dynamics ? Not in this course.

IEEE 39 New England Power Grid Model

- 39 transmission buses
- 10 generators

linearized dynamics: $\dot{x}(t) = A x(t) + B_1 d(t) + B_2 u(t)$

objective function:
$$J = \lim_{t \to \infty} \mathcal{E}\left(\theta^{T}(t) Q_{\theta} \theta(t) + \dot{\theta}^{T}(t) Q_{\dot{\theta}} \dot{\theta}(t) + u^{T}(t) R u(t) + \gamma \sum_{i, j} w_{ij} |F_{ij}(t)| + \frac{1}{2} \sum_{i, j} w_{ij} |F_{ij}(t)| +$$

memoryless controller: u = -F x(t)

Electricity consumption Buildings: Demand-side

Commercial, Industrial & Institutional (C/I/I)

Resedential

Why Buildings ?

Portion of global energy use

Portion of electricity consumption in the United States

Portion of global total CO₂ emissions

Electricity use due to cooling,

lighting and ventilation

Portion of natural gas use dedicated to space heating

How are building models obtained today ?

How are building models obtained today ?

White-Box Modeling

White-Box Modeling

How are building models obtained today ?

Grey-Box (Inverse) Modeling

Grey-Box Modeling: 'RC' networks

Discrete-Time State Space Model:

(parameterized by θ)

States (All node temperatures):

 $\mathbf{x} = [\mathsf{T}_{eo}, \mathsf{T}_{ei}, \mathsf{T}_{co}, \mathsf{T}_{ci}, \mathsf{T}_{go}, \mathsf{T}_{gi}, \mathsf{T}_{io}, \mathsf{T}_{ii}, \mathsf{T}_{z}]^{\mathsf{T}}$

Inputs (Disturbances and Control):

 $u = [T_a, T_g, T_i, Q_{sole}, Q_{solc}, Q_{rade}, Q_{radc}, Q_{radg}, Q_{solt}, Q_{conv}, Q_{sens}]^T$

$$x(k+1) = \hat{A}_{\theta}x(k) + \hat{B}_{\theta}u(k)$$
$$y(k) = \hat{C}_{\theta}x(k) + \hat{D}_{\theta}u(k)$$

Parameter Estimation:

Least Squares Error

$$\theta^* = \underset{\theta_l \le \theta \le \theta_u}{\operatorname{arg\,min}} \sum_{k=1}^{N} (T_{z_m}(k) - T_{z_{\theta}}(k))^2$$

subject to $\theta_l \leq \theta \leq \theta_u$

LIST OF PARAMETERS

$U_{\star o}$	convection coefficient between the wall and outside air
$U_{\star w}$	conduction coefficient of the wall
$U_{\star i}$	convection coefficient between the wall and zone air
U_{win}	conduction coefficient of the window
$C_{\star\star}$	thermal capacitance of the wall
C_z	thermal capacity of zone z_i
	g: floor; e: external wall; c: ceiling; i: internal wall

Heating, Ventilation, & Air Conditioning

Principles of modeling for CPS – Fall 2018

HVAC is everywhere.. It is all around us, Even now, in this very room, You can feel it, ..when you go to work, ..when you go home ..when you pay your electricity bill

Its all about comfort..

Components of HVAC System

5 system loops..

Air handling systems

Air handling systems

- Delivers air to zones
- Heats and cools air
- Often integrates ventilation

Air handling system

Air handling unit

Air handling unit

Air terminals: Constant Air Volume (CAV)

Air terminals: Variable Air Volume (VAV)

Ceiling plenum return

The plenum is the space between the ceiling and the roof, or floor, above.

Air-Water interface- Heat exchanger.

Chilled water loop

Chiller plants

Just chilling as a grad student...

Chiller plants

4 million gallons of water at 42 degree Fahrenheit

> 26 MW peak load

Cooling towers

Air Handling Unit

Meeting zone loads

$$Q_{tot} = \dot{m}_{SA}(h_{RA} - h_{SA})$$
$$Q_{sen} = \dot{m}_{SA}c_p(T_{RA} - T_{SA})$$

Given controlled room air temperature, can control airflow or supply temperature to meet changing sensible loads

VAV System:

- Local control loops: thermostats, supply air controllers, etc.
- Supervisory control: set-points and modes for local control loops.

Local control loops

Zone temperature control loop (thermostat)

Local control loops

Supply Air Temperature (SAT) control loop

Simplest and common control is **on/off** control.

- Upper threshold t_u , lower threshold t_l , differential = $t_u t_l$.
- Switch off when $t \ge t_u$ and on when $t \le t_l$.
- Time lag may cause larger operating differential.
- Suitable for thermostats (slow dynamics) but not for supply-air fan control.

Next lecture..

Creating a dynamical system model of a zone.

Source: [Deng et al., 2010]