State-space modeling
using first-principles

Lecture 2
Principles of Modeling for Cyber-Physical Systems
Instructor: Madhur Behl

Madhur Behl - madhur.behl@virginia.edu



Download Matlab

Campus-wide license for MATLAB, Simulink, and companion toolboxes

https://www.mathworks.com/academia/tah-portal/university-of-virginia-40704757 .html|
(or search for UVA Matlab portal)

Contact res-consult@virginia.edu for questions regarding access to Matlab licenses.
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https://www.mathworks.com/academia/tah-portal/university-of-virginia-40704757.html

Prediction is very difficult, especially
If it's about the future.

{VJ(&’ /s B{H’Uz
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In today’s lecture we will learn about...

How to predict the future states and outputs of
systems using physics based mathematical modeling
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In today’s lecture we will learn about...

* Ordinary differential equations (ODEs).
* Linear dynamical systems
* State-space representation

* Elements of first-principles based modeling:
* Mechanical and electrical modeling
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What is a System ?

Cruise control system Cardio-pulmonary system ,
Autopilot system

Economic system

. Governance system
Grading system

— Tropical storm system
Communication system P Y

Complex system

System of systems

Taxation system Cyber-Physical systems Healthcare system
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What is a System ? Intuitive defintion

—>

Inputs u(t) Outputs y(t)

Collection of components

Non-trivial interactions

Well defined boundary
with the environment
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What is a System ?

—>

Inputs u(t) Outputs y(t)

Mapping from time dependent inputs to time dependent outputs

(causal definition)
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Differential equations

Many phenomena can be expressed by equations which involve therates of change of quantities (position,
population, concentraition, temperature...) that describe the state of the phenomena.

Mechanics

Engineering
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The state of a system describes enough information about the
system to determine its future behavior in the absence of any
external inputs affecting the system.

The set of possible combinations of state variable values is called
the state space of the system.
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Differential equations

The state of the system is characterized by state variables, which describe the system.

The rate of change is (usually) expressed with respect to time
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Differential equations — A simple example

After drinking a cup of coffee, the amount C of caffeine in
person’s body follows the differential equation:

dC \ 9—\' O’\AU'

= —aC
Tar =

Where the constant a has a value of 0.14 hour?

How many hours will it take to metabolize half of the initial amount of caffeine ?

v
dc Car
— = —afdt ; Ct)=Coe™™; if C(t) = Co/2, t= In2/a
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Differential equations —example

e Susceptibles S .~ DOI: 10.1007/978-1-4757-3516-1 + Corpus ID: 83264573
. Mathematical Models in Population Biology
¢ |nfectious I+ . ;
and Epidemiology
® Reoovered or dead Rt/ F. Brauer, C. Castillo-Chavez - Published 2001 - Biology

S 7 -BSOID, 1) =BSOIO ~AI(H,  R(O)=1(),
—

S+ I(t)+ R(t) =1 =

Principles of modeling for CPS — Fall 2020 Madhur Behl - madhur.behl@virginia.edu



Recall: Differential equations

* Ordinary differential equation (ODE): all derivatives are with respect to single independent
variable, often representing time.

* Order of ODE is determined by highest-order derivative of state variable function appearing in
ODE.

* ODE with higher-order derivatives can be transformed into equivalent first-order system.

* Most ODE software's are designed to solve only first-order equations.
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Higher order ODE’s

For k-th order ODE

)

(i v
— yB(t) = ft.y.y, ...,

define k& new unknown functions

ui(t) = y(t), ua(t) =y'(t), ...

___—_/L______I
——

y" 1)

/

Cug(t) = y* (1)

[ [

Then original ODE is equivalent to first-order system
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Inputs change with time ?

What makes a system dynamic ?

Outputs change with time ?

UsD Euro
$100 o €5
$200 €170

Currency Exchange
System L
$300 €255 §5
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Static vs Dynamic Systems

Static System Dynamic System
Output is determined only by the Output takes time to react
current input, reacts . . L as
instantaneously Relationship char!ges with tlr'n.e,'

depends on past inputs and initial

Relationship between the inputs conditions (it is dynamic!)
and outputs does not change (it is _ o
static!) Relationship is represented by a

differential equation

Relationship is represented by an
algebraic equation

Inputs 2-

2V

10
msm)  Outputs

10 rad/sec

Motor
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Static vs Dynamic Systems

Static System viewpoint Dynamic System viewpoint
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Dynamical System

Inputs u(t) m—)
Initial State x,  —— )

System m)  Output y(t)

— = x = f(x(t),u(t),t)
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Dynamical System

Possibly a non-linear function

~ = Fe(®),u(®), D

Rate of change
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The state x(t,) at any future time, may be determined exactly given knowledge of
the initial state, x(t,) and the time history of the inputs, u(t) between t, and t;

System order: n, min number of states required for the above statement to be true.

Possibly a non-IAinear function
{

— i = F(O,u®), 0

Rate of change
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Inverted pendulum

m, I

Principles of modeling for CPS — Fall 2020

* Inverted pendulum mounted to a motorized
cart.

e Unstable without control :

e pendulum will simply fall over if the cart isn't
moved to balance it.

Balance the inverted pendulum by applying a
force to the cart on which the pendulum is
attached.

Madhur Behl - madhur.behl@virginia.edu



Inverted pendulum
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Inverted pendulum
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Inverted pendulum

* |Initially pendulum beginswith 8 = m

* Requirements:
* Settling time for 6 less than 5 secs.
* Pendulum angle 8 never exceeds 0.05 radians
from the vertical.
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Inverted pendulum — ODEs

| 2

_Fgrcj_s’in the horizontal direction Mx + bx +

—_—

=F

v . .
Reaction force N: - N = m¥ + mlf cos & — ml*6%sin 6

Governing equation (1) of this system: Horizontal

— (M +m)5}/+ bx + mll cos @ — ml?0%sin0 =F
— — == -
YoDeT
22 0d ove T 5O

AL #p -
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Inverted pendulum - — ODEs

Forces in the vertical direction:

~ Psin@ +Ncos 6 — mgsin @ = mlf + mi cos 0
L L — — —

Get rid of the P and the N terms:
(moment balance equation)

—Plsin® — Nlcos8 =16

Governing equation (2) of this system: Vertical
.OK
— (I +ml*)8 + mglsin = —ml¥ cgs/@_

(g
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Inverted pendulum

Assuming that the system remains within a small neighborhood of the
equilibriumf =m

For small deviation@
COS
-

™

+9) ~ -1

— L

Ssin(m + @) ~ —0

42 =02~0
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Inverted pendulum - Dynamics

Equations of motion are:
\é/

2 (4 mBB 4+ mglp = mii, (Lo

0 (M +m) + bi-mlg=F ()
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Rearranging — State-Space representation
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From State-Space to Space..and back

X Roll Axis
Yaw Axis Roll

e

Yaw

\(1 X = %(anpcﬂ + F,(csOsp — sypc) + F,(syPs¢ + cpsOcd)) — g

y= %(Fxswcﬂ + Fy(cpc + sppsOs) + F,(spsOcd — cyps))

Center of T
Gravity 7= — (—F,560 + FycOs¢ + F,cOc)

. My . s0 AP .
¢ =7 +Poco + 1 (Mycp + Myse + 1,(p0 — PBs0) + 21,8s6)
a t
.1 . .
8 =1-(0.5(I, - 1)Y*s20 — 1,PcO + Myc — M,s¢)
t

= % (Mycd + Mys + La(d0 — POs6) + 21,1p0s6)
t

Pitch Axis
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From state-space to Space

SPACES] AUTOIMONOPREOR:S
" E C bl El GLo EHIfI'I'ELﬂ-.l:ﬂ-
HRHHDER

PREE= =R
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Dynamical System

Possibly a non-linear function

= X = Jj (x (), u(?), {5

Rate of change
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T_im_e Invariant SyStem: Simplifying assumption #1

fdoesknot depend on time

| \ M)M}l)b

= x=f(xu)

W&

« The underlying physical laws themselves do not typically depend on time.

* Inputs u(t) may be time dependent
« The pa_@_eters/@,nstants which describe the function f remain the same.

Rate of change
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Linea rlty Simplifying assumption #2
Ceg(vﬂJr;/) s -

Over a sufficiently small operating range (think tangent line near a curve),
the dynamics of most systems are approximatelv linear

9 -
8 Maonlinear Function
®  Operating Point
7t Linearization
= = = Region of Good Approximation
o
y=x*
[ ] 5+ | / :
— 4 F :
> s
L_Js g
2t S
) '
1 : 1 [
[ e ...... s P T
y=2x-1 (xy)=(1.1
Ak : —
2 ; !
-3 2 1 ] 1 2
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State-Space representation

A state-space model represents a system by a series of first-order differential state equations

and Wui—put equations.

Differential equations have been rearranged as a series of first order differential equations.
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Example

Consider the following sys;cem where u(t) is the input and x(t) is the output.
%?+5x+3x+2x—u V=X V=X (A@,))Qoyé
\__,__J

1okt
Can create a state-space model by pure mathematical manipulation through changing
variables
. l¢
\”1_,— X, .7? X & X

Resulting in the following three first order dlfferentlal equations (ODEs)

vV v, —
X1 = X2, ; o) . od ODE
\/.X:z = X3,

ﬁ=—5x3—3x2—2x1+u 7 ok o1 O®C
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'X:l —_ xz
( State Equations Xy = X3
X3 = —5x3 — 3xy — 2x4 +@

L Output Equation y = X

\

System has 1 input (u), 1 output (y), and 3 state variables (x,, x,, x;)

_—
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State-space representation

| e

J
1
[o
=
_|_
o
I~4)

<

1
19
|1
+
I
<)

for linear systems
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From our prior example

X - A XK + B «
N fx.; (Q 1 (_)\ f2_C1\ fo\
X; = X3 Y2=10 0 1 ¥+ 10 u
xé = —5x3 —3x; — 2x; +u” = C—sz‘ _—gxz _—g@x—sﬁ “le
g - c /ﬂ’j; o
y=x, 1= [0 1 0] %+ [0]u
X3
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The State-Space Modeling Process

1) Identifyi_nﬁt_l_t(\//gjcr)iébbltes (actuators and exogenous inputs).

2) ldentify ggggutX/ariables (sensors and performance variables).

3) Identify sL\gm:]QIes. (Hmmm...how ? — indep. energy storage)
4) Use first principles of physics to relate derivative of state variables

to the input, state, and the output variables.
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Why use state-space representations ?

State-space models:

+» are numerically efficient to solve,

e can handle complex systems,

() allow for a more geometric understanding of dynamic systems, and

. form the basis for much of modern control theory Uk — Y- éadﬂ\ Moz,

@
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~Linear dynamical system

Continuous-time linear dynamical system (CT LDS) has the form

x = A()x(t) + B(t)u(t) y(t) = C()x(t) + D(O)u(t)

e .
ot € R denotes time

o z(t) € RWis the state (vector)
o u(t) € R™s the input or control

e y(t) € R®is the output
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Continuous-time linear dynamical system (CT LDS)

____

¢ SAOXO +BOUD ¥ = COx@) + Dou

oﬁA(t) e R"*" is the dynamics matrix

e B(t) € R"*™ is the input matrix

o C(t) € RP*™ is the output or sensor matrix

o D(t) € RP*™ is the feedthrough matrix
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Linear dynamical system

Some terminology

e most linear systems encountered are time-invariant: A, B, C, D are
constant, i.e., don't depend on ¢
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Linear dynamical system

Some terminology

e most linear systems encountered are time-invariant: A, B, C, D are
constant, i.e., don't depend on ¢

. . 5 A .
e when there is no input u (hence, no B or D) system is called
autonomous

Madhur Behl - madhur.behl@virginia.edu
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Linear dynamical system

Some terminology

e most linear systems encountered are time-invariant: A, B, C, D are
constant, i.e., don't depend on ¢

e when there is no input u (hence, no B or D) system is called
autonomous

e very often there is no feedthrough, i.e., D =0
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Linear dynamical system

Some terminology

e most linear systems encountered are time-invariant: A, B, C, D are
constant, i.e., don't depend on ¢

e when there is no input u (hence, no B or D) system is called
autonomous

e very often there is no feedthrough, i.e., D =0

v
e when u(t) and y(t) are scalar, system is called single-input,
single-output (SISO); when input & output signal dimensions are more
than one, MIMO
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%getej[me@inear dynamical systerm (DT LDS)

_5lep sonl St 17

x(k + 1) = A()x(k) + B(yu(k)
y(k) = C(k)x(k) + D (k)u(k)

where
o ke Z = {(l,il,iQ,...}

e (vector) signals x, u, y are sequences
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Many dynamical systems are nonlinear (a fascinating
topic) so why study linear systems?

* Most techniques for nonlinear systems are based on linear systems.

* Methods for linear systems often work unreasonably well, in
practice, for nonlinear systems.

* If you do not understand linear dynamical systems, you certainly
cannot understand nonlinear dynamical systems.
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Many dynamical systems are nonlinear (a fascinating
topic) so why study linear systems?

“Finally, we make some remarks on why linear systems are so
important. The answer is simple: because we can solve them!”

- Richard Feynman [Fey63, p. 25-4]
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Modeling Mechanical Systems

Mechanical systems consist of three

) :-:.,: — X, y N
basic types of elements: “
M k, m, ——F
1. Inertia elements MM
2. Spring elements

3. Damper elements

Principles of modeling for CPS — Fall 2020
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Vehicle suspension — Mass-spring-damper

._.I]'u{tl

Vehicle/passenger
displacement

5
._.ITu.r{ﬂ

Wheel displacement

T‘r“{t}: Input

Elastic Tire ] :

A) B) - bm >
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Inertia elements

 Example: any mass in the system, or moment of

inertia. [ p [0
oy 41
kl m - m —F
* Each inertia element with motion needs its own MY T L]

differential equation (Newton’s 2"9 Law, Euler’s 2nd
law)

ZFzma ZM =Ja T 6 o

* Inertia elements store kinetic energy M@
1 Sk b

E = ijdt= jrm’yvdt= Emvz
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Spring elements F=k(x,—x,)

* Force is generated to resist deflection.

X+x1

Y

 Examples: translational and rotational springs

* Spring elements store potential energy

1
E = ij dt = jkxfc dt = Ekx2 noniinear

f unstretched
. spring
linear
| —
Hooke's Law: X It takes twice
F — _kx _t as much force
AX spring™ tostretcha 2%
Spring constant k F l spring twice
as far.

2F |
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Damper elements F = b(%, — %,)

* Force is generated to resist motion. j;z
 Examples: dashpots, friction, wind drag ‘

|—>i'1

 Damper elements dissipate energy Fe— . | < F
linear damping friction drag
kineti
/ T e /

stati il

friction ™
X

=

Principles of modeling for CPS — Fall 2020 Madhur Behl - madhur.behl@virginia.edu



How many state variables are required ?

 There is an intuitive way to find state-space models

 What initial conditions do | need to capture the system’s state?

* Definition: the state of a dynamic system is the set of variables (called state variables)
whose knowledge at 7 = 7, along with knowledge of the inputs for 7 > ¢, completely

determines the behavior of the system for ¢ > ¢,

* # of state variables = # of independent energy storage elements
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Example

m —— u(?)

% NP

Equations of motion S Choice of state variables

mlj}+b(y—z')+k(y—z)=0 X1 =V, X =Y

m,Z+b(Z—-y)+k(z—y)=u X3 =2Z,X4 = Z
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Example

m —— u(?)

% NP

Equations of motion S Choice of state variables
m]_X:Z + b(xz — X4) + k(x1 — x3) — O xl = y’ x2 = y

moyxX, +b(xy —x,) + K(x3 —x1) =1 X3 =2Z,X4 = Z
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Example

m s u(t)

%;v | L] o

= %, 3 (01 0 0) Y (o

X1 -k -b k b |[|X1 8
o= —b(x; — x4) — k(%1 — x3) x:Z —_ |1 M1 My My X2 + ol u
N o710 9 9 LTl
X3 = X4 \x{ @ m, m, m_ﬂ \x{ M2
Xy = u—b(xy —x3) — k(xz — x1)
m; Is this the minimum

set of states ?
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) p [F
Example ]
ml k ]112 —>u(t)

Look at where energy is stored
Energy Storage Element State Variable

spring (stores elastic PE) X = (y — 2)

mass 1 (stores KE) X, =y

mass 2 (stores KE) X3 =Z

damper does not store energy, it dissipates energy

Principles of modeling for CPS — Fall 2020
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b y C N
Example ; mj +b(y —2) +k(y—z) = 0
i | , o u() ) o
" \/\/]{N m myZ+b(Z—y)+k(z—y)=u
.X,:l = X9 — X3
s 2= 5= — (b, — x5) — kxy)
=Y — > ST
X3 = Z Rewriting in statg-space x‘3 = 7= — (—b(x3 _ xz) + kx1 4+ u)
representation

m;
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_>Z

Example

X; = Xy — X3
R fx'; /—Ok —119 _bl xl\ 0
X =Yy = - (=b(xy —x3) — kxy) %=l m m om x|+ (1) .
X3 = Z = 1 (=b(x3 —x,) + kx; +u) \ng «,: r: ;_b XBJ J”_ZJ
mZ \2 2 2
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Modeling electrical systems

Passive elements Active elements
Capacitor Inductor Resistor Voltage source
. ° . v
[storage] [storage] [dissipative] | A
!
R= R decreasing
o+ + + - WE —
. . Vs0=Y% C) R i increasing
Y i : ! :
> i
0
C L R Current source
lo AV |
> @) |
N RincreasingT T Voincreasing
V.
! =/ (o}
O- ~ _ s() °C¢> R Y%o=Rl;
dv di . R=0
i=C— v=L" v=Ri o) P v
ot ot : L N
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Viechanical — Electrical equivalency

We recognize a common form to the ODE describing each system and create analogs in
the various energy domains, for example:

N

[ voltage
velocity

| pressure

Principles of modeling for CPS — Fall 2020

and

[ current

\

force in the
volume flow rate
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electrical
mechanical

fluidic

)

> domains.




Capacitor - Mass

Describing Equation
Electrical Capacitance

q=CV ’UED—L—‘ IC—Q”I 1= C'd—V21
dt

Translational Mass

— d

F—wo— M (2 _ F=M-—v,
'|'.-'2 1
constant dt
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Energy
E : M
= vtV
2
1
E=—Mv,
2



nductor - Spring

Electrical Inductance Describing Equation
L d .
Ugc}m}—oﬂl Vo1 = L-—1
dt

Translational Spring

k 1 d

v vo1 = ——F
ﬂEMF k dt
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Energy




Resistor - Damper

Electrical Resistance Describing Equation Energy
R i | 1 0
—AAN—>—07 1= —Vy P=—-vy
" ! R R

Translational Damper

F g I_ o v F: . P:bV
ro—1 [, b-vyy 21
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Generalized system representation.

Effort
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Power = Through variable X Across variable

Across variable

I 4 ) I
Through variable

System

\_ )
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Power = Through variable X Across variable

Power is voltage times current P — l X V

Power is velocity times force P=FX v

Principles of modeling for CPS — Fall 2020 Madhur Behl - madhur.behl@virginia.edu



Power = Through variable X Across variable

Through variables:
e Variables that are measured through an element.
e Variables sum to zero at the nodes on a graph/circuit/free body diagram.
e Variables that are measured with a gauge connected in series to an element.

An ammeter measures current
"through" an element.

A

Force is measured by inserting an instrument in series
with an element.

©0 0|

+

?v TR Fi—> m LA m
a4

|-
N
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Power = Through variable X Across variable

Across variables:
e Variables that are defined by measuring a difference, or drop, across an element,
that is between nodes on a graph (across one or more branches).
* Variables sum to zero around any closed loop on the graph
* Variables that are measured with a gauge connected in parallel to an element.

A voltmeter measures voltage
"across" an element
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Power = Through variable X Across variable

Physical Domain

Electrical

Hydraulic

Magnetic

Mechanical rotational
Mechanical translational
Gas

Thermal

Thermal liquid
Two-phase fluid
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Across Variable

Voltage

Pressure

Magnetomotive force (mmf)
Angular velocity
Translational velocity
Pressure and temperature
Temperature

Pressure and temperature

Pressure and specific internal energy
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Through Variable

Current

Flow rate

Flux

Torgque

Force

Mass flow rate and energy flow rate
Heat flow

Mass flow rate and energy flow rate

Mass flow rate and energy flow rate



Energy storage : A-Type elements

Stored energy is a function of the Across-variable.

C . dv
e i | % ‘T Y&
] E — /t m’dt:/thdfu
\Vc/ ) 1;:]2 0
2
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Generalized, Capacitance

generalized across variable

generalized through variable . .
generalized capacitance
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Energy storage: T-Type elements

Stored energy is a function of the Through-variable.

, .
/ '

\Vsza'Vb/ E = / ’U’édt:/Lidi
—00 0
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Generalized inductance, L

generalized through variable

df
YA A'[dtﬁ/

generalized across variable generalized inductance

Madhur Behl - madhur.behl@virginia.edu



Dissipative elements : D-Type

Dissipative elements (non-energy storage)

a R Y v = 1R
O%—/\/\/\/_O . 92 2
P pr— p— p—

X
| @
E
=
||
o
c

.n
(V)
O
A
.
v
Vo
o a
&
||
@
@M
||
K
~—
™
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Generalized resistance, R

generalized through variable

YA W

generalized across variable generallzed resistance
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Cyber-Physical Energy Systems Modeling

Thermal Capacitance

( po—C —o0 _ d —
1 ‘ﬁ_i ! f'rl — q = Ct'aTz E = Ct°T2
constant

Thermal Resistance

R g 1 1
Tr0-AAAN——0 T q=—"1y P=—"T5
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Next lecture..

Learn how to get paid for doing nothing 1 DID

while saving the environment ! N%HI!EG
TODAY Al

STILL GOT PAID

....the answer might have to do with
drinking tea.
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