

Principles of Modeling for Cyber-Physical Systems

Fall 2018 CS 6501-003 / SYS 6581-004/600

Madhur Behl

Computer Science

Systems and Information Engineering

Principles of modeling for CPS – Fall 2019

Madhur Behl - madhur.behl@virginia.edu

Meet your instructor

Madhur Behl

Assistant Professor Computer Science, Systems and Information Engineering.

PhD, University of Pennsylvania (2015) Co-Founder @ Flexergy AI

What do I do..

Modeling, simulation, control, optimization, and implementation of Cyber-Physical System

Cyber-Physical Energy Systems

Internet of things

Data Predictive Control:

Interfacing machine learning suitable for predictive control.

DeepExplainations:

Answering open-ended queries using procedural generation and interpretable models.

DeepRacing AI:

Algorithms for operating autonomous cars at the limits of their control

Safety of Autonomous Vehicles

Critical Infrastructures & Smart Cities

This lecture

- Course logistics (5-7 mins)
- Course introduction (the interesting stuff !)

Course Logistics

- Timings: Tue & Thu 2:00pm 3:15pm,
- Location: Olsson Hall 018
- Course website: https://linklab-uva.github.io/modeling_cps/
- All lectures notes/slides/assignments/videos will be posted on this website.
- Piazza: https://piazza.com/virginia/fall2019/modelingcpsfall2019/home

• Prerequisites (must have):

- Some familiarity with Matlab / Simulink.
- Some programming experience, Python is a plus.
- Mathematical maturity (differential equations, matrix operations, some calculus, probability distributions)

•Prerequisites (good to have):

- Machine learning
- Temporal logic
- Model predictive control

Teaching Assistants

Siavash Yousefi Jordehi

sy3fw@virginia.edu

Systems Engineering, PhD

Jiechao Gao

jg5ycn@virginia.edu

Computer Science, PhD

Office Hours: TBA

Grading

- No midterm, No final exam.
- The course has three modules (more on this later). Each module is equally weighted.
 - Energy CPS, Medical CPS, and Automotive CPS
- ~4 worksheets (posted on UVACollab/Website) in each module, comprising of:
 - Problem sets
 - Coding/implementation assignments
- 2 late homework submissions permitted No questions asked.
 - Should not be more than 1 day late. 25% grade lost for each additional late day.
- Abide by the UVA honor system. Absolutely no code/solution sharing !

Office Hours

- Timings: Monday 2-3pm, or by appointment.
- Location: Link Lab Room 265 [Olsson Hall 2nd floor]
- Available by appointment outside of the listed hours:
 - To discuss course assignments or lectures.
 - Research opportunities.
- Live streamed office hours will be held for online CGEP students.

Your responsibilities.

- Attend the lectures (in-person for on-grounds students)
- Check Piazza and the Course website for announcements, and assignments.
- Ask questions !
 - Ask, disagree, debate..

what is this course about ?

Principles of Modeling for Cyber-Physical Systems

Lets break it down..

1. What are Cyber-Physical Systems ?

- 2. What do you really mean by modeling?
- 3. What principles am I going to learn about ?

Cyber-Physical Systems

Deeply integrating

computation, communication, and control

into physical systems

Physical = some tangible, physical device or system + environment Cyber = computational + communicational

Application domains: Transportation

Faster, safer, more energy-efficient air travel

Improved use of airspace

Autonomous unmanned drones

How the MCAS (Maneuvering Characteristics Augmentation System) works on the 737 MAX

Unique requirements for safeguarding aircraft

Cyber-physical systems are ones that integrate physical components through computation and networking, and they present unique challenges and opportunities for cyber defense.

Wherever there are computers, there is the potential for adversaries to attempt to subvert them for their own purposes.

First the challenge: cyber-physical systems like aircraft are typically more resource constrained—including in connectivity—than desktop and enterprise systems (and even mobile systems). This means that desktop and enterprise security solutions relying on spare computing power, storage and always-on high-bandwidth networking, generally cannot be used on cyber-physical systems. This complicates the problem for cyber defense.

But here's the opportunity: cyber-physical systems are generally designed for a specific purpose and to interact with the physical world. In other words, their behaviors tend to be designed to achieve a physical result.

Boeing rotorcraft test pilot Roger Hehr (left) reviews security features following a successful High-Assurance Cyber Military Systems flight test on the Unmanned Little Bird helicopter. Boeing photo

Application domains: Transportation

Safety, security, and control of autonomous cars

- Connected vehicles.
- Autonomous fleets/ride sharing.
- Traffic management

Application domains: Energy

- Smart buildings.
- Energy-efficient operation.

- Smart homes.
- EV charging/solar rooftops

- Reliable and resilient electricity grid.
- Micro grids.

Application domains: Healthcare + Biomedical

- Electronic patient record management.
- In home healthcare delivery.

Health and well being monitoring devices.

Safety, and security of medical devices and heath management systems.

Application domains: Critical Infrastructure

- Water & waste management.
- Storm-water/flood control.

Structural health monitoring

Utility infrastructure- Gas, Electricity, Steam.

Application domains: ... and many more

Agriculture

Manufacturing

Industrial Control

Characteristics of CPS

- Pervasive computation, sensing and control
- Networked at multi- and extreme scales
- Dynamically reorganizing/ reconfiguring
- High degrees of automation

- Dependable operation with *potential* requirements for high assurance of reliability, safety, security and usability
- With / without human in-the-loop
- Conventional and unconventional substrates / platforms

Closing the loop

Human in the loop

Cyber-Physical Systems

Deeply integrating

computation, communication, control, and humans

into physical systems

Physical = some tangible, physical device or system + environment Cyber = computational + communicational

Cyber-Physical Systems - Goals

Transform how we interact with the physical world

Fusion of physical and computational sciences

Produce significant impact on society

Why is CPS hard ?

Principles of modeling for CPS – Fall 2019

Why is CPS hard ?

- Disciplinary boundaries need to be realigned
- New **fundamentals** need to be created
- New technologies and tools need to be developed
- Education need to be restructured

Why is CPS hard ?

- Disciplinary boundaries need to be realigned
- New **fundamentals** need to be created
- New technologies and tools need to be developed
- Education needs to be restructured

Hmmm, I wonder if there is a course which is trying to achieve this?

what is this course about ?

Principles of Modeling for Cyber-Physical Systems

Lets break it down..

- 1. What are Cyber-Physical Systems ?
- 2. What do you really mean by modeling ?
- 3. What principles am I going to learn about ?

Modeling types: Physical modeling

Principles of modeling for CPS – Fall 2019

Modeling types: Functional/compositional modeling

Modeling types: Mathematical modeling

$$\begin{split} \dot{v}_{\chi} &= \frac{1}{m} \Big[\Big[F_{\chi}^{fL} + F_{\chi}^{fR} \Big] \cos \delta - \Big[F_{y}^{fL} + F_{y}^{fR} \Big] \sin \delta + \Big[F_{\chi}^{rL} + F_{\chi}^{rR} \Big] + \dot{\varphi} v_{y} \Big], \\ \dot{v}_{y} &= \frac{1}{m} \Big[\Big[F_{y}^{fL} + F_{y}^{fR} \Big] \cos \delta + \Big[F_{\chi}^{fL} + F_{\chi}^{fR} \Big] \sin \delta + \Big[F_{y}^{rL} + F_{y}^{rR} \Big] - \dot{\varphi} v_{\chi} \Big], \\ \ddot{\varphi} &= \frac{1}{I_{\varphi}} \Big(L_{f} \Big(F_{\chi}^{fL} + F_{\chi}^{fR} \Big) \sin \delta + L_{f} \Big(F_{y}^{fL} + F_{y}^{fR} \Big) \cos \delta - L_{r} \Big(F_{y}^{rL} + F_{y}^{rR} \Big) \Big], \\ &+ \frac{L_{w}}{2} \Big(F_{\chi}^{fR} - F_{\chi}^{fL} \Big) \cos \delta + \frac{L_{w}}{2} \Big(F_{\chi}^{rR} - F_{\chi}^{rL} \Big) + \frac{L_{w}}{2} \Big(F_{y}^{fL} - F_{y}^{fR} \Big) \sin \delta \Big), \end{split}$$

Modeling types: Computational modeling

A word about mathematical models

"Essentially all models are wrong, but some are useful"

- George E.P. Box (statistician)

....this course is about building useful models.

This course: Three CPS domains

Automotive CPS

EnergyPlus

Matlab

UPPAAL

Simulink

TensorFlow

Python

Energy CPS Module

Principles of modeling for CPS – Fall 2019

THE SCIENCES MIND HEALTH TECH SUSTAINABILITY EDUCATION VIDEO PODCASTS BLOGS STORE

2014 Officially Hottest Year on Record

THE SCIENCES MIND HEALTH TECH SUSTAINABILITY EDUCATION VIDEO PODCASTS BLOGS ST

2015 Is Officially the Hottest Year

July Was the Hottest Month in Recorded History

After a record-breaking heat wave in Europe and the Arctic, last month edged out July 2016

on necora for the U.S.

2018 Was the 4th Warmest Year on Record, Berkeley Group Announces

EUROPEAN HEAT WAVE

FRIDAY

Price Volatility: Summer peak

Principles of modeling for CPS – Fall 2019

"All kilowatts are not created equally"

Principles of modeling for CPS – Fall 2019

AUGUST 1, 2019

Heat wave results in highest U.S. electricity demand since 2017

Price Volatility: Winter peak

O DA

Real-Time

Both Select LMPs \$2,600 \$2,200 Maximum \$2,680.21/MWh Dominion Zone at Hr 0705 \$1,800 86x P \$1,400 \$1,000 \$600 \$200 \$-200 01:00 07:00 09 11:00 13:00 15:00 17:00 19:00 05:00 : 00 21:00 01:00 03 : 00 23 00 01/24/14 01/2 14 01 /24/14 14 01/25/14 Scale: Display Data Points 24 Hours DOM DEOK COMED EKPC PEP BC AEP PS

Nominal price: \$31.21/MWh

Peak Price: \$2,680.21/MWh

Mahur Behi Janahur Behig vizenaledu

Price volatility is the new normal

PJM (ISO) Locational Marginal Prices (LMPs) example

Principles of modeling for CPS – Fall 2019

At large scales: University Campus

Economic incentives for model based control

Principles of modeling for CPS – Fall 2019

Madhur Behl - madhur.behl@virginia.edu

Why focus on Buildings ?

Portion of global energy use

Portion of electricity consumption in the United States

Portion of global total CO₂ emissions

Model-Based control for buildings

Traditional rule-based building control	Model-based building control
 Sequence of operations or planned steps. Pre-defined rules set by building engineers. Purely reactive. Equipment-level controllers (PID) ensure reference tracking. 	 Model how the building will response to disturbances (weather, occupants etc.) Predictive Control design: Energy-efficiency Demand flexibility Fault handling
Start Chiller #3 at 4:00 at 90% boad Start Chiller #1Image: Chiller #3 at 90% boad boad 	• Okay to use equipment level PID control
(but price increased !)	Model Predictive Control (MPC)

The control problem in buildings

Integrated control of:

- Heating
- Cooling
- Ventilation
- Lighting
- Blinds

State-space 'RC' thermal modeling

Principles of modeling for CPS – Fall 2019

Whole building energy simulation

Using EnergyPlus.

Generating input-output data

Modeling a building in MATLAB

Non-linear parameter estimation and model validation

Predictive control

Medical CPS Module

Principles of modeling for CPS – Fall 2019

Software related vehicle recalls

IMPLANTABLE DEVICES RECALL

- Over 600,000 cardiac medical devices recalled from 1990-2000
 - 40% of which were due to software issues
- 2008-12: 15% of *all* the medical device recalls due to software

Implantable Pacemaker

Implantable Cardioverter-Defibrillator (ICD)

THE HEART

 Muscle contraction triggered by electrical signals

BRADYCARDIA

- Slow generation and conduction of electrical signals
- Slow heart rate
- Symptom: fainting, dizziness
- Could lead to heart attack

IMPLANTABLE PACEMAKER

• To leads in heart chambers

IMPLANTABLE PACEMAKER

- Two leads in heart chambers
- Deliver electrical signals when heart rate is low

IMPLANTABLE PACEMAKER

b leads in heart imbers

- Deliver electrical signals when heart rate is low
- Device malfunction may result in injury or death
- Flawed devices are recalled

CHALLENGES

Pacemaker

Autonomous device with minimum human interaction Limited diagnostic/therapy capability Its safety must be evaluated within its environment

The physical plant:

Complex dynamics of the heart Interaction between the heart and the body Domain knowledge

CLOSED-LOOP EVALUATION

The Human Os | Biomedical | Imaging

22 Aug 2019 | 12:00 GMT

Personalized Virtual Hearts Could Improve Cardiac Surgery

Digital replicas of patients' hearts can identify hidden, irregular heart tissue for surgeons to destroy

By Megan Scudellari

CLOSED-LOOP HEART MODELING

Cellular Level Node Automaton

- Divide refractory period into time periods
- Model refractory properties as timers using timed automata.
- These time periods can be measured during EP study

Cellular Level Node Automaton

The UPPAAL model of the closed-loop system

Model checking – Counter example guided.

Safety property

Ventricular rate should not be equal or above the upper rate limit for more than 30 beats

A[]not monitor.err

Automotive CPS Module

Principles of modeling for CPS – Fall 2019

Localization and Mapping

Where am I ?

Scene Understanding

Where/who/what/why of everyone/everything else ?

Trajectory Planning and Control

Where should I go next ? How do I steer and accelerate ?

Human Interaction

How do I convey my intent to the passenger and everyone else ? Principles of modeling for CPS – Fall 2019

Localization and Mapping

Where am I ?

Scene Understanding

Where/who/what/why of everyone/everything else ?

Trajectory Planning and Control

Where should I go next ? How do I steer and accelerate ?

Human Interaction

How do I convey my intent to the passenger and everyone else ? Principles of modeling for CPS – Fall 2019

ן Deep Learning

Localization and Mapping

Where am I?

Scene Understanding

Where/who/what/why of everyone/everything else?

Trajectory Planning and Control

Human Interaction

How do I convey my intent to the passenger and everyone else ?

Networks Deep Neura

able σ D D

End-to-End Deep Learning for Self Driving Cars

Video credit:

DeepTesla

77

Machine intelligence is largely about training data.

When's a pedestrian not a pedestrian? When it's a decal.

One car ? or Multiple cars ?

Ramen Noodle place or Do Not Enter Sign ?

There is a bus right next to you!!

Autonomous Driving: End-to-End

Autonomous Driving: End-to-End

End to End Learning for Self-Driving Cars

Mariusz Bojarski **NVIDIA** Corporation Holmdel, NJ 07735

Davide Del Testa NVIDIA Corporation Holmdel, NJ 07735

Daniel Dworakowski NVIDIA Corporation Holmdel, NJ 07735

Bernhard Firner NVIDIA Corporation Holmdel, NJ 07735

Beat Flepp NVIDIA Corporation Holmdel, NJ 07735

Prasoon Goyal NVIDIA Corporation Holmdel, NJ 07735

Lawrence D. Jackel **NVIDIA** Corporation Holmdel, NJ 07735

Xin Zhang

Mathew Monfort NVIDIA Corporation Holmdel, NJ 07735

Urs Muller NVIDIA Corporation Holmdel, NJ 07735

Jiakai Zhang **NVIDIA** Corporation **NVIDIA** Corporation Holmdel, NJ 07735 Holmdel, NJ 07735

Jake Zhao **NVIDIA** Corporation Holmdel, NJ 07735

Karol Zieba **NVIDIA** Corporation Holmdel, NJ 07735

Autonomous Driving: End-to-End

F1/10 FPV Driving

what is this course about ?

Principles of Modeling for Cyber-Physical Systems

Lets break it down..

- 1. What are Cyber-Physical Systems ?
- 2. What do you really mean by modeling?
- 3. What principles am I going to learn about ?

This course: Modeling principles

- Modeling for predictive control.
- Parameter estimation.
 - Linear and non-linear
- Model checking
- Model validation
- Model selection
 - Model abstraction/reduced order modeling
- End-to-end learning

This course: Learning objectives

This course: Learning objectives

(Figure 1, 1) and the state of the second

The future belongs to those who learn more skills and combine them in creative ways.

This course: Becoming a Cyber-Physicist

Principles of modeling for CPS – Fall 2019

Next lecture:

- How to predict the future..
 - State-space modeling using first principles.
 - Mechanical, electrical, thermal systems
 - ODEs and elements of white box modeling