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1 DYNAMICAL SYSTEM EQUATIONS:

The first step in the control design process is to develop appropriate mathematical models of 
the system derived either from physical laws and experimental data. The goal of this work-
sheet is to review the state-space modeling approach to modeling mechanical, electrical, and 
thermal systems and learn how to enter these models into MATLAB for simulation and anal-
ysis.
Key MATLAB commands for this tutorial are: ss, step, and tf
Dynamic systems are systems that change or evolve in time according to a fixed r ule. For 
many physical systems, this rule can be stated as a set of first-order differential equations:

ẋ = d x

d t
= f [x(t ),u(t ), t ] (1.1)

where x(t ) is the state vector, a set of variables representing the configuration of the system
at time t . For instance in a simple mechanical mass-spring-damper system, the two state
variables could be the position and velocity of the mass. u(t ) is the vector of control inputs at
time t , representing the externally "forces" or inputs on the system, and f is a function giving
the time derivative (rate of change) of the state vector, dx/d t for a particular state, input, and
time.
The state at any future time, x(t1), may be determined exactly given knowledge of the initial
state, x(t0), and the time history of the inputs, u(t ), between t0 and t1. The minimum number
of state variables, n, required in a given system for the above statement to hold true is referred
to as the system order and determines the dimensionality of the state-space.
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In many physical systems, the function, f, does not depend explicitly on time, i.e. ẋ = f(x,u).
Such a system is said to be time invariant. This is often a very reasonable assumption, since
the underlying physical laws themselves do not typically depend on time. For time invariant
systems, the parameters or coefficients of the function, f, are constant over time. The input,
however, may still be time dependent, u(t ).
Another common assumption is the linearity of the system. Nearly every physical system is
nonlinear, i.e. f is typically some complicated function of the state and inputs. However, over
a sufficiently small operating range (visualize a tangent line near a curve), the dynamics of
most systems can be approximated as linear, that is ẋ = Ax+Bu. Which is why it is worthwhile
to study linear time invariant (LTI) systems.

1.1 STATE-SPACE REPRESENTATION

For continuous linear time invariant (LTI) systems, the standard state-space representation
is given below:

ẋ = Ax +Bu

y =C x +Du

where x is the vector of state variables (nx1), ẋ is the time derivative of state vector (nx1), u is
the input or control vector (px1), y is the output vector (qx1), A is the system matrix (nxn), B
is the input matrix (nxp), C is the output matrix (qxn), D is the feedforward matrix (qxp).
Often there are state variables which are not directly observed or are otherwise not of interest.
The output matrix, C, is used to specify which state variables (or combinations thereof) are
available for use by the controller. Also often there is no direct feedforward in which case D
is the zero matrix.

1.2 SYSTEM 1: AUTOMATIC CRUISE CONTROL

Automatic cruise control is an example of a control system found in many modern vehicles.
The purpose of the cruise control system is to maintain a constant vehicle speed despite ex-
ternal disturbances, such as changes in wind or road grade. This is accomplished by mea-
suring the vehicle speed, comparing it to the desired or reference speed, and automatically
adjusting the throttle according to a control law.
We consider here a simple model of the vehicle dynamics, shown in Figure 1.1 (referred to as
the free-body diagram (FBD)). The vehicle, of mass m, is acted on by a control force, u. The
force u represents the force generated at the road/tire interface. For this simplified model
we will assume that we can control this force directly and will neglect the dynamics of the
power train, tires, etc., that go into generating the force. The resistive forces, bv , due to rolling
resistance and wind drag, are assumed to vary linearly with the vehicle velocity, v , and act in
the direction opposite the vehicle’s motion. b is the damping coefficient in this case.
With these assumptions we are left with a first-order system. Summing forces in the x-direction
and applying Newton’s laws of motion, we arrive at the following system equation:

mv̇ +bv = u (1.2)
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Figure 1.1: Simplified vehicle dynamics.

The output we are interested in is the speed of the vehicle v , therefore the output equation
is:

y = v

Assume the following parameters of the system:

• vehicle mass (m) = 1000 kg;

• damping coefficient (b) = 50 N.s/m

Problem 1-1: Submit the following: (20 points)

• [P1-1.a] Write the dynamical equation of the system in state space representation.

• [P1-1.b] How many states are needed ?

• [P1-1.c] Is the system linear/non-linear in the state ?

• [P1-1.d] Is the system time-invariant ?

• [P1-1.e] What are the state variables (i.e. which physical quantities do they represent?)

• [P1-1.f] What are the dimensions of the A,B,C, and D matrices of the state-space model
?

• [P1-1.g] Write a script cruise.m to create a state-space model object for the vehicle in
MATLAB. Submit your code.

• [P1-1.h] Is the model implemented in MATLAB a continuous-time or discrete-time model
?
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Figure 1.2: Simplified aircraft pitch dynamics.

• [P1-1.i] Using the MATLAB command step, plot and submit the step response of this
dynamical system. What is the physical interpretation of the step-response plot ?

• [P1-1.j] Can you infer the order of the system from its step response ?

1.3 SYSTEM 2: AIRCRAFT PITCH AUTOPILOT

The equations governing the motion of an aircraft are a very complicated set of nonlinear
differential equations. However, under certain assumptions, they can be decoupled and lin-
earized into longitudinal and lateral equations. Aircraft pitch is governed by the longitudinal
dynamics. In this example we will design an autopilot that controls the pitch of an aircraft.
The basic coordinate axes and forces acting on an aircraft are shown in the Figure 1.2.
We will assume that the aircraft is in steady-cruise at constant altitude and velocity; thus,
the thrust, drag, weight and lift forces balance each other in the x- and y-directions. We will
also assume that a change in pitch angle will not change the speed of the aircraft under any
circumstance (unrealistic but simplifies the problem a bit). Under these assumptions, the
longitudinal equations of motion for the aircraft can be written as follows:

α̇=µΩσ[−(CL +CD )α+ 1

(µ−CL)
q − (CW sinγ)θ+CL]

q̇ = µΩ

2i y y
[[CM −η(CL +CD )]α+ [CM +σCM (1−µCL)]q + (ηCW sinγ)δ]

θ̇ =Ωq

For this system, the input will be the elevator deflection angle δ and the output will be the
pitch angle θ of the aircraft.
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To simplify the modeling equations, we can plug in some numerical values:

α̇=−0.313α+56.7q +0.232δ

q̇ =−0.0139α−0.426q +0.0203δ

θ̇ = 56.7q

These values are taken from the data from one of Boeing’s commercial aircraft.

Problem 2-1: Submit the following: (20 points)

• [P1-2.a](2) Write the state space representation of the system.

• [P1-2.b](2) How many states are needed ?

• [P1-2.c](4) Write the dimensions of the A,B,C,D matrices of the state-space model.

• [P1-2.d](10) Write a script aircraft.m to create a state-space model object for the
vehicle in MATLAB. Submit your code.

• [P1-2.e](2) Using the MATLAB command step, plot and submit the step response of this
dynamical system. What is the physical interpretation of the step-response plot ?
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