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Abstract—The rising popularity of driver-less cars has led
to the research and development in the field of autonomous
racing, and overtaking in autonomous racing is a challenging
task. Vehicles have to detect and operate at the limits of dynamic
handling and decisions in the car have to be made at high
speeds and high acceleration. One of the most crucial parts in
autonomous racing is path planning and decision making for an
overtaking maneuver with a dynamic opponent vehicle. In this
paper we present the evaluation of a track based offline policy
learning approach for autonomous racing. We define specific
track portions and conduct offline experiments to evaluate the
probability of an overtaking maneuver based on speed and
position of the ego vehicle. Based on these experiments we can
define overtaking probability distributions for each of the track
portions. Further, we propose a switching MPCC controller setup
for incorporating the learnt policies to achieve a higher rate
of overtaking maneuvers. By exhaustive simulations, we show
that our proposed algorithm is able to increase the number of
overtakes at different track portions.

I. INTRODUCTION

A. Autonomous Racing

Autonomous racing has become popular over the recent
years and competitions like Roborace or the Indy Autonomous
Challenge as well as with small-scale racecars like F1Tenth
[10] provide platforms for evaluating autonomous driving
software. The overall goal of all these competitions is that
researchers and engineers can develop algorithms that op-
erate at the vehicles edge: High speeds, high accelerations,
high computation power, adversarial environments. Similar
to normal racing series like Formula 1 the development of
algorithms for autonomous racing generate trust in the field of
autonomous driving and enables the development of advanced
autonomous driving algorithms.
The algorithms that were developed in the field of autonomous
racing so far are mostly focusing on single vehicle only
that try to achieve a human-like lap time. The field of high
dynamic overtaking maneuver with dynamic opponents was
less displayed so far. In addition, achieving a human-like
behavior (e.g. like a Formula 1 race driver) that makes the
decision about an overtaking maneuver and executes a secure
and reliable maneuver at high speeds is still an unsolved
question.

B. Contributions

Based on the state of the art, in this paper we present an of-
fline policy learning for overtaking maneuvers in autonomous
racing. This work has two primary contributions:
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1) We provide a design of experiment (DoE) for an offline
driven policy learning approach by track discretization.
Based on the specific track we provide a discretization
into turns and vary the position and velocity of the ego
vehicle for these turns. With this DoE we create policies
for the racecar that will enable a better overtaking ma-
neuver. These policies learnt for different track portions
are then integrated into path planning and control. We
show that this approach is effective in increasing the
number of overtakes at different track portions.

2) The overtaking policies learnt from the experiments
are then incoparated into a MPCC planner. We pro-
pose a switched MPCC controller which combines a
receding horizon control algorithm and specific driving
behaviours like driving on the left side and driving on
the right side. These modes restrict the action space for
agent/vehicle and helps to enforce practical overtaking
strategies like overtake from inside of track or stay on
outside of the track at particular turns.

In summary, with the setup defined in this paper we can
create more realistic and better overtaking maneuvers for
autonomous race vehicles. It also provides the intuition and
domain knowledge for tuning learning-based planners and
controllers.

II. DESIGN OF EXPERIMENTS

The main idea behind making better overtaking is to learn
from the track. Each track has a specific layout and a combi-
nation of turns and straights. Each turn has a specific curvature
and therefore allows the car to drive only a a maximum
velocity. In addition, to drive with the maximum speeds the
car needs to follow a specific trajectory that leads through the
turns.
We propose now an offline experiment setup which will create
a detailed insights on specific track portions and the possibility
to overtake in specific turns. With these offline experiments it
is possible to create track-based policies that can be used to
enhance the MPCC planner by integrating these policies into
its cost-function and constraints.

A. Track Portions

In the first step we are defining the track portions that we
will examine. We will use here four track portions that the
most common kinds of curves/turns found on racetracks:

• Straightaway: This is a straight park of the track which
has almost no sign of curvature. It is meant to let drivers
push the cars to their speed limits. The straightaway



is the quickest and easiest track portion for overtaking
maneuvers.

• Sweeper: The sweeper curve is a gradual, long and large
turn. These curves are usually very wide and have high
banking which makes it easier for race cars to pass by.
The cars reach high velocities here and the overtaking
can be done on the inside or the outside.

• Hairpin: The hairpin has the biggest curvature and is
mostly the tightest turn on a track. Here we will see the
car slow down to and make very sharp turns. overtak-
ing maneuvers happen here mostly before entering the
hairpin.

• Chicane: The chicane is a straightaway modified into a
slight S shape. The velocities that the car is reaching
here are varying from high to low based on the racetrack.
Overtaking maneuvers happen here less often because its
less space due to the steering maneuvers.

As a showcase in this paper we are using the Silverstone
racetrack. The choice of Silverstone track for our experiments
is backed by the fact that this track layout has all of the
above types of curves which is challenging for an overtaking
maneuver. In figure we display 9 different track portions on the
Silverstone track that are marked with labels 1 to 8. The track
portions are defined by T = {τ |τ ∈ (1, 2, 3, 4, 5, 6, 7, 8)} and
are categorized in the four track segment types:

• Straightaway: 6
• Sweeper: 1, 4, 7
• Hairpin: 2, 3, 8
• Chicane: 5

Fig. 1. Silverstone Circuit

B. Sampling based Trajectory Rollouts

To examine these defined track portions we setup an offline
simulation that varies different parameters visualized in figure
2.

The simulation setup consists of two agents: One ego and
one opponent vehicle. The opponent vehicle follows a pre-
computed race line based on [4] and is non-interactive. The
ego vehicle is starting behind the opponent vehicle and is an

Fig. 2. Ego vehicle (blue car) starting behind the opponent (red car) vehicle.
The opponent vehicle follows a pre-computed raceline, the position and
starting velocity of the ego vehicle are varied.

intelligent agent that planning its path based on the MPCC
algorithm. For every track portion τ ∈ T, a uniformly
sampled set of positions P : XXY ⊂ R2 are chosen as
the starting position for the ego. The obstacle vehicle how-
ever always tracks the pre-computed race line. The obstacle
vehicle speed is varied as vobs = vbaseline ∗ (1 + s) where
s ∈ {−0.2, 0,+0.2}, vbaseline being the speed of the obstacle
from the pre-computed curvature optimal race line.

The agents are initialised with these positions and set to
start the simulation. The ego vehicle synthesises dynamic tra-
jectories based on the MPCC planner with obstacle avoidance.
A fully observable model is used for the ego vehicle i.e. the
ego vehicle will have the information of the track portion τ
which it is driving in and the current state of the obstacle
Xobs = [xobs, yobs, φobs]

In this setup, we conduct exhaustive simulations based on
the following parameter variations:

• Lateral offset: The position of the ego vehicle is varied
lateral across the track with an offset from the centerline.

• Longitudinal Offset: The position of the ego vehicle is
varied longitudinal along the centerline of the track.

• Opponent Speed Change: The opponent speed is varied
with ±20% from baseline

With this kind of simulations we have now the possibilty
to examine if a specific position in one of the defined track
portions has an advantage for an overtaking maneuver or not.

It is highly expected that the ego vehicle will succeed in an
overtaking maneuver when the obstacle speed is 20% lower
than its baseline. This establishes the fact that speed advantage
always helps in overtaking (e.g. DRS zones in F1). The next
set of parameters that influence the overtaking maneuver is the
position. In a convoluted track like the Silverstone circuit we
can display if starting off at a specific position enables a higher
chance of an overtaking maneuver. For each track portion, we
define four regions of interest: R1, R2, R3 and R4. Starting
positions of the ego vehicle are uniformly sampled in all the
four regions to generate experimental data.

III. RELATED WORK

Although the state of the art displays tons of algorithms
for path and behavioral planning of autonomous vehicles, the
explicit algorithm development for autonomous race cars is
just done in a small community. As part of the Roborace



competition [1] and [3] presented a planning an control system
for real life autonomous racing cars. Both approaches focused
on a holistic software architecture that is capable of dynamic
overtaking. Nevertheless none of them realized a head to head
race with the vehicles. As a part of the same competition,
[2] presented a nonlinear model predictive control (NMPC)
for racing. The overtaking strategy was implemented as a
term in the objective function. The NMPC has the freedom
to choose the side for an overtake and was mainly relying on
the obstacles velocity to perform the overtaking maneuver.
Beside these classical control driven approaches, new machine
learning algorithms were used to learn how to race. [14]
displayed an end-to-end framework for a computer game
(Formula One (F1) Codemasters) that is using Convolution
Neural Network (CNN) integrated with Long Short-Term
Memory (LSTM) to learn how to drive fast an reliable around a
racetrack. In [12] a reinforcement learning algorithm was pre-
sented that learns competitive visual control policies through
self-play in imagination. Although this setup is not focusing on
real vehicle dynamic behavior, it provided interesting strategies
for multi vehicle interaction.
When it comes to multi vehicle racing, only a few researchers
have considered the whole pipeline of path and behavioral
planning in combination with the interactions the vehicle
can make. [8] presented a non-cooperative game theory ap-
proach where autonomous racing is formulated as racing
decisions as a non-cooperative nonzero-sum game. Liniger
et al. displayed that different games can be modelled that
achieve successfully different racing behaviors and generate
interesting racing situations e.g. blocking and overtaking.
Notomista et al. [9] considered a two-player racing game
where the ego vehicle is based on a Sensitivity-ENhanced
NAsh equilibrium seeking (SENNA) method, which uses an
iterated best response algorithm in order to optimize for a
trajectory in a two-car racing game. Focusing on collision
avoidance, the SENNA methods exploits interactions between
the ego and the opponent vehicle. Unfortunately this approach
was only displayed in an unknown simulation environment
and therefore its performance is unknown. Wang et. al [13]
proposed a nonlinear receding horizon game-theoretic planner
for autonomous cars in competitive scenarios with other cars.
By implementing the trajectory as a piecewise polynomial
and incorporating bicycle kinematics into the trajectory the
authors were able to show that the ego vehicle exhibits rich
game strategies such as blocking, faking, and opportunistic
overtaking maneuvers.

The state of the art displays that the autonomous rac-
ing community is focusing on integrating effective learning
techniques and strategies into dynamic path and behavioral
planning. Additionally, authors have displayed individual al-
gorithms and methods that are trying to make the car faster,
more reliable and more interactive [11] [5] [6]. Majority
of the literature is centered around extensions to existing
path and behavioral planning approaches. Improvements in
planning/control for overtaking maneuvers have not yet been
explored rigorously. Techniques to optimize path planning and

control algorithms to ensure a better overtaking maneuver have
to addressed.

IV. PLANNING & CONTROL SETUP

The continuous time system dynamics described in Section
VII-A is used to develop a constrained optimal controller
to steer the vehicle in the track. The optimal planner plans
the path for a horizon of N steps ahead, steers the vehicle
with the first step, and again repeats the process for the
specified amount of time. This is a modified form of the
Model Predictive Controller (MPC).

A. Model Predictive Contouring Control

The Model Predictive Contouring Control (MPCC) problem
defined in [7] is re-formulated into a finite-continuous time
optimal control problem as follows:

min
∫ T

0

[
εlinc (t) εlinl (t)

] [ Qc 0
0 Ql

] [
εlinc (t)
εlinl (t)

]
- Qθ θ̇(t) + uT (t)Ru(t)dt

s.t. ẋ = f(x, u,Φ)
blower � x(t) � bupper
llower � u(t) � lupper
h(x,Φ) ≤ 0

given the system dynamics f and the arclength parametriza-
tion of the contour (the track) Φ. A single-track bicycle model
is used. Section VII-A contains the details of the vehicle
dynamics. Here x(t) denotes the system state, u(t) the inputs
to the system, b the box constraints on the state, l the box
constraints on the input and h captures the track boundary
constraints. The state of the system is augmented with the
advancing parameter θ

x =

[
xmodel
θ

]
and the virtual input θ̇ is appended to the inputs from the
original system dynamics.

u =

[
umodel
θ̇

]
The track boundary constraint is realized as a convex disk
constraint.

h(x,Φ) =
(
x− xlint (θ)

)2
+
(
y − ylint (θ)

)2 − rΦ(θ̂)2

Here rΦ(θ̂) is the half-width of the track at the last predicted
arc length.

The linearized contouring error εlinc and lag error εlinl are
computed as shown in Figure 3. To make the problem real-
time feasible they are approximated by linearizing both them
and the track around the previous solution θ as:

Φ(θ) =

[
xt(θ)
yt(θ)

]
≈ Φ(θ̂) + ∂θΦ(θ̂)(θ − θ̂)

⇒ Φlin(θ) =

[
xt(θ̂) + cos(φ(θ̂))(θ − θ̂)
yt(θ̂) + sin(φ(θ̂))(θ − θ̂)

]



this allows us to compute the errors

xlint (θ) = x(t) + εlinl cos(φ(θ̂)) + εlinc sin(φ(θ̂))ylint (θ)

= y(t) + εlinl sin(φ(θ̂))− εlinc cos(φ(θ̂))⇔
εlinl
= cos(φ(θ̂))

(
xlint (θ)− x(t)

)
+ sin(φ(θ̂))

(
ylint (θ)− y(t)

)
εlinc
= sin(φ(θ̂))

(
xlint (θ)− x(t)

)
− cos(φ(θ̂))

(
ylint (θ)− y(t)

)
These approximations hold good if εl ≈ 0 and θ̂ − θ ≈ 0. In
practice the first can be incentivized by increasing Ql and the
second by warmstarting the problem correctly.

Fig. 3. Linearized contouring and lag errors

The MPCC is optimizing to move the position of a virtual
point θ(t) along the track to achieve as much progress as
possible while steering the model of the vehicle to keep
contouring and lag errors as small as possible.

B. Switched Model Predictive Contouring Control

The MPCC controller defined above ensures that the vehicle
stays inside the track, drives fast and avoids obstacles. The
track and obstacle constraints are realised as non-linear convex
disk constraints. However, such a setup does not give enough
control over achieving different driving behaviours like driving
on the inside of a chicane (left side of the track), driving on the
outside of a sweeper (right side of the track). To achieve more
control over the path planning of the ego vehicle, a switched
MPCC setup is proposed and displayed in figure 4.

In this, the agent switches between different modes defined
by different solver formulations. The overtaking possibilities
for the MPCC in this paper are:

• Normal Mode: In this, the search space for the N-
horizon MPCC is the complete racetrack

• Drive Right: In this, the search space of the N-horizon
MPCC is restricted only right half of the track.

• Drive Left: In this, the search space of the N-horizon
MPCC is restricted only left half of the track.

The ”Drive Right” and ”Drive Left” modes are achieved by
imposing additional constraints on the contouring error of

Fig. 4. Switched MPCC Controller

the vehicle. The constraints of the optimisation problem are
tweaked with slack variables (like ε) to ensure that the planner
does not get stuck into an in-feasibility loop leading to a crash.
Note that many more of these modes can be defined and added
to the MPCC. These modes can then integrate practical driving
behaviours like ADAS mode (making tighter bounds on the
problem and not letting the vehicle drive at its limits) and
Push-to-Pass (giving a speed boost for a short window of
time).
The MPCC control problem with a horizon of N = 35 is
modeled as a quadratic problem (QP) with linear and non
linear inequalities solved by efficient interior point solvers
in FORCES [15]. At each step of the simulation, the solver
generates the optimal control input u∗ for a horizon of N . The
first value u∗(0) is used to steer the vehicle and the procedure
is repeated.

C. Track Parametrization

The center-line of the track is given in way-points (X-and Y-
position). To implement MPCC an arc-length parametrization
Φ is required. This is realized by interpolating the way-points
using cubic splines with a cyclic boundary condition, and
creating a dense lookup table with the track location and the
linearization parameters. Note that in the optimization it is
not practical to pass the full parametrization since it contains
functions that the used solver has difficulties dealing with such
as floor and modulo. Instead the linearization parameters are
precomputed offline and passed at every stage.

V. OFFLINE POLICY LEARNING FOR OVERTAKING

Algorithm 1 elucidates the offline experiment based policy
learning developed in this paper.
X , Y are the set of x and y coordinate offsets (expressed
as percentage of track width) and S = {−0.2, 0,+0.2} is
the speed offset expressed as a percentage change from the
baseline obstacle speed.

The obstacle update model is g, which is a pre-computed
curvature optimal race line of the Silverstone track. One run
of the algorithm populates the policy map Π with the track
regions for each of the 8 curves, having highest probability
of overtakes. In total we are running a number of 576
experiments based on the 16 lateral, 12 longitudinal and 3
velocity variations for each of the 8 track portions.



Algorithm 1: Offline Policy Learning

Function MPCC Planner(Xobs):
Solve MPCC Problem defined in Section IV

return u∗;
Function Check Overtake(Xobs, Xego):

Project Xobs, Xego as s1, s2 on track
if s1 > s2 then

overtake status = 0;
else

overtake status = 1;
end
return overtake status;

Function Main():
initialize: Π = {}

for τ ∈ T do
initialize: p = {}, overtakes = {}, total = {}

for x, y, s ∈ XXYXS do
initialize: Xego, Xobs

for t = 0 to Tsim do
u∗ = MPCC Planner (Xobs)

Steer the ego: X+
ego = f(Xego, u

∗)
Update the obstacle position:
X+
obs = g(Xobs)

Xobs, Xego = X+
obs, X

+
ego

Identify track portion i ∈ {0, 1, 2, 3}
if Check Overtake(Xobs, Xego) then
overtakes[Ri] + +;

total[Ri] + + ;
end

end
p[Ri] = overtakes[Ri]/total[Ri]

Compute: p[R1], p[R2], p[R3], p[R4]
Π[τ ] = argmax(p)

end

A. Offline Experiment Results

The offline policy learning algorithm is run on the described
experimental setup. Based on the outcome of the algorithms
different results are shown. Firstly we display the results for
one specific track portions.

Fig. 5. Hairpin Curve - Overtake analysis

We choose the hairpin (track portion label 3) which has
a predefined overtaking window (marked in yellow). The

obstacle vehicle (red) is tracking the optimal race line and
the ego vehicle (blue) starts behind the obstacle (5)

The ego vehicle is said to overtake the obstacle if it is
ahead of the obstacle before the overtaking corridor ends. The
overtaking corridor defines the portion of the track in which a
successful overtake must happen. If the ego vehicle passes the
obstacle vehicle outside of the corridor, it will not count as a
successful overtake. Similar overtaking corridors are defined
for all 8 track portions. As a results we get for each experiment
the feedback if the overtaking maneuver was successful (figure
6).

Fig. 6. Display of successfull overtaking maneuvers over different positions
across different speed offsets for the hairpin (track portion 3)

The Algorithm 1 is run for the track portion and the
overtaking probability distributions are obtained. With this, the
policy for this curve is also obtained. Table Ibelow shows the
probability distribution of overtakes at this curve.

TABLE I
OVERTAKING PROBABILITIES FOR HAIRPIN

Region Probability
R1 0.41
R2 0.38
R3 0.25
R4 0.21

To use this probability later for our switching MPCC
algorithm we define these four regions in latent space on the
track as displayed in figure 7.

The distribution of overtakes with respect to change in
obstacle speed is shown in Figure 6. It can be observed that
the number of overtakes is highest if the obstacle speed is
20% lesser than its baseline. However, when there is no speed



Fig. 7. Hairpin curve split in four track regions of interest

advantage (baseline scenario), we can observe that the region
R1 has higher overtakes than any other region. Therefore,
the policy for this track portion would ensure that the ego
vehicle starts at R1 before entering the hairpin which gives it
a positional advantage and increases it overtaking probability.
This process is repeated for all track portions and the policies
are learnt from the offline experiments.

Besides the case study on the hairpin Table II contains
the overtaking probabilities for all the eight derived track
portions. The policy map is developed using the results from
the experiments.

TABLE II
OVERTAKING PROBABILITIES FOR ALL TRACK PORTIONS

Track
Portion

(τ )

Type p(R1) p(R2) p(R3) p(R4)

1 Sweeper 0.99 0.93 0.52 0.59
2 Hairpin 0.63 0.52 0.31 0.33
3 Hairpin 0.41 0.38 0.25 0.21
4 Sweeper 0.65 0.67 0.57 0.59
5 Chicane 0.25 0.21 0.14 0.21
6 Straight 0.99 1.0 0.95 0.99
7 Sweeper 0.47 0.52 0.33 0.31
8 Hairpin 0.40 0.36 0.37 0.38

From the statistical data obtained from offline experiments,
we have the following observations and outcomes:

• At the straightaway, it does not really matter where we
are on the track when trying to overtake. Track region 3
(position: back right) is the one region with the lowest
overtaking probability. This is due do the cause that the
on the straight the optimal raceline leads from left to
right across the straight. Starting in the back right would
lead to an braking and left overtaking maneuver which
is causing problems for turn 7 afterwards.

• We can see that in each hairpin we have the highest
overtaking probability in region 1 (position: front left).
This is due to the fact that being on the inside in the
hairpin that car is able to achieve a better trajectory
inside the hairpin.

• The sweeper curve generally has a high overtaking
probability due to the high speeds of the car. We only
get an advantage here if we are close enough to the car
and therefore we need to be in region p(R1) or p(R2).
In both track portions 4 and 7 we see a higher overtaking
maneuver from starting in the front right track regions.

• The chicane has generally a low overtaking probability
due to the fact that it is a complex region to handle for
the car and with little space for an overtaking maneuver.
We see a highest overtaking probability here on the
front left region and in contrary the lowest overtaking
probability in the back right region. Both front right and
back left region show the same overtaking probability and
therefore being far behind the car lowers here again the
overtaking possibility of the ego car.

B. Online switching MPCC Results

Firstly we define the algorithm for the switching MPCC:
Algorithm 2: Policy based Switched MPCC

Function Switched MPCC(Xobs, mode):
if mode = ‘normal‘ then

u∗ = Solve MPCC Problem in Section IV
else

Modify MPCC to integrate policy (left,right)
u∗ = Solve Modified MPCC Problem

end
return u∗;

initialize Xego, Xobs mode = ‘normal‘
for t = 0 to Tsim do
u∗ = Switched MPCC (Xobs,mode)

Steer the ego: X+
ego = f(Xego, u

∗)
Update the obstacle position: X+

obs = g(Xobs)
Xobs, Xego = X+

obs, X
+
ego

Identify track portion τ where ego is present
Policy lookup: mode = Π[τ ]

end

With the results of the track region probability we now have
the possibility to use the policies obtained from algorithm 1
in our switching MPCC algorithm. We use this information
to make the car move to the regions of high overtaking
probability as displayed before

We repeat the experiments at all track portions
with the learnt policies and compute the number of
successful overtakes. Table III summarizes the number
of overtakes before and after the policy is integrated
into the ego vehicle’s MPCC planner. For every track
portion, there are 576 trajectories owing to X =
{−0.8,−0.7,−0.6,−0.5,−0.4,−0.3,−0.2,−0.1, 0, 0.1,
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}, Y = {−0.6,−0.5,−0.4,
− 0.3,−0.2,−0.1, 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6} and
S = {−0.2, 0, 0.2}.

The results display that the offline policy learning approach
is successful and leads to an increased number of overtaking
maneuvers when implemented in a path planning approach.



TABLE III
NUMBER OF OVERTAKES WITH AND WITHOUT POLICY

Track
Portion (τ )

Track
Portion
Type

Number of
Overtakes

Policy OFF

Number of
Overtakes
Policy ON

1 Sweeper 436 452
2 Hairpin 256 337
3 Hairpin 308 426
4 Sweeper 342 357
5 Chicane 117 302
6 Straight 565 566
7 Sweeper 237 283
8 Hairpin 218 394

For all eight track portions we see more overtaking maneuvers.
We can observe that overtaking at the straightaway is usually
easy (even without policy) and therefore we don not see many
more overtaking maneuvers with switching policy. The same
is for the sweeper curve. Since sweeper curves are usually
wide track portions that allow high speeds and not complicated
steering maneuver, both with and without switching policy
achieve high maneuvers. Although we see that the switching
policy leads to more overtaking maneuvers.
We see the biggest impact in both the hairpins and the chicane.
This is mainly due to the fact, that overtaking at these hairpins
is usually complicated and needs a good strategy beforehand.
We see that we can nearly triple the amount of overtaking
maneuvers in the chicane which shows, that having the right
starting position for an overtaking maneuver is indispensable.
The best results in this experiment is achieved in track portion
8 (hairpin) where a total of 186 more overtakings are done with
the MPCC switching.
In summary we see that the gains for the overtaking maneuver
are less for straight sections such as straightaway and sweeper
curve and better for curved sections such as the hairpin and
the chicane.

VI. CONCLUSION AND FUTURE WORK

In this paper, a track based policy learning from offline
experiments is proposed to learn effective overtaking strate-
gies based on position advantage at different track portions.
A switched Model Predictive Contouring Control (MPCC)
scheme was proposed to integrate driving behaviours/policies
into the motion planning and control of the vehicle. Extensive
simulations on real world racetrack layout with a naive, non-
interactive obstacle shows that the offline policy learning algo-
rithm is able to provide areas for high overtaking maneuvers.
By integrating these areas in a switching MPCC method
we could show that the policy based Switching MPCC ap-
proach has more overtakes than the regular MPCC planner.
Some track portions like straight have not shown consider-
able increase in the number of overtakes, as the overtaking
probabilities are already highest (around 0.99) in a straight-
way. However, the policy based algorithm was found to be
highly effective for convoluted track portions like chicanes,
where a positional advantage plays a major role in successful
overtaking maneuvers.

The offline policy learning shows promising results for a
naive opponent following a pre-computed raceline with no
interactions. Future directions of research include extending
the policy learning algorithm to race against a variety of oppo-
nent types. We consider: non-reactive, reactive and aggressive
opponents which are defensive and sophisticated to overtake.
Other dimensions of research include the evaluating the policy
based algorithm across different tracks and study the effect of
changing track parameters on track-policy based overtaking.
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VII. APPENDIX

A. Vehicle Model

The simulation is built around the dynamic model used in
[7] and is implemented with adapted parameters. It is a single
track bicycle model with pajecka tire forces. The single-track

Fig. 8. Single track model with pajecka tire forces

bicycle model is used for modelling the race car (ego-vehicle).
The model is based on in-plane motions and pitch, roll as well
as load-changes are neglected. Due to the rare-wheel drive
nature and absence of active breaking, longitudinal forces on
the front wheel are also neglected.

The dynamics of this model read:

Ẋ = vx cos(φ)− vy sin(φ)

Ẏ = vx sin(φ) + vy cos(φ)

φ̇ = ω

v̇x =
1

m
(Frx − Ffy sin(δ) +mvyω)

v̇x =
1

m
(Fry + Ffy cos(δ)−mvxω)

ω̇ =
1

Iz
(Ffylf cos(δ)− Frylr)

ḋ = uḋ

δ̇ = uδ̇

θ̇ = uθ̇

where
αf = − arctan

(
ωlf + vy

vx

)
+ δ

αr = arctan

(
ωlr − vy
vx

)
Ffy = Df sin (Cf arctan (Bfαf ))

Fry = Dr sin (Cr arctan (Brαr))

Frx = (Cm1 − Cm2vx) d− Croll − Cdv2
x

X ∈ X : X = [x, y, φ, vx, vy, ω, d, δ, θ] is the state of the
car. x, y are position of the centre of gravity, φ is the yaw
angle of the vehicle with reference to world frame, vx, vy are
longitudinal and lateral velocities and ω is the yaw rate.
The parameter θ is known as the advancing parameter (which
is augmented to form the complete state vector), d is the
integrated motor torque and δ is the steering angle.

u ∈ U : u = [uḋ, uδ̇, uθ̇] is the input to the model. These
inputs are the derivatives of the commandable inputs to the
vehicle chosen so as to penalise their smoothness.

X ⊂ R9 and U ⊂ R3 are the set of admissible states and
control inputs for the vehicle defined by the optimal control
problem in Section IV


