Autonomous racecar control in head-to-head competition using
Mixed-Integer Quadratic Programming

Nan Li! Eric Goubault?

Abstract— This work deals with the control of an autonomous
racecar that should perform the fastest lap time on a track,
while in presence of an opponent vehicle. Controlling the
vehicle at its physical limit while ensuring collision-freeness
is a challenging problem.

We propose a Nonlinear Model Predictive Control (NMPC)
model under a minimum time objective, which integrates
the opponent vehicle’s trajectory as a collision-avoidance con-
straint. By using a curvilinear coordinates system, progress time
can be set as a direct optimization objective. The approximation
of vehicle’s shape is proposed and collision-avoidance con-
straints can therefore be represented efficiently. A safe control
strategy is finally generated by a method based on Mixed-
Integer Quadratic Programming (MIQP). We perform several
experiments on our prototype implementation and discuss its
performance issues.

I. INTRODUCTION

Autonomous racecar competition is an emerging topic
that involves the control of vehicles at their physical limits,
as well as highly complex collision avoidance methods.
Some techniques developed in this context can also be
transferred to non-racing autonomous cars. We consider here
the problem of achieving the best lap time on a racing track,
both without any opponent or given some (just one, for the
sake of simplicity, in this paper) other competing vehicles.
In our model, it is the ego vehicle’s (EV) responsibility to
avoid collision with an opponent or leading vehicle (LV) that
it intends to overtake.

Several methods exist to compute control strategies for the
problem of achieving the best lap time in absence of dynamic
opponents. They can be classified in two approaches: either
build a two-level controller [1] (a path planner at the higher
level and a path follower at the lower level), or integrate the
system dynamics, path constraints and control limits into a
single Nonlinear Model Predictive Control (NMPC) problem
(2], [3].

The overtaking problem has been considered in the context
of highway driving, or for simple racing track configurations.
In particular, Mixed-Integer Programming (MIP) is used in
[4] to encode and solve the two-lane expressway overtaking
problem. In [5], the vehicle’s objective is to globally follow
the center of a straight line track, with static obstacles
avoidance.

Few works take into consideration the dynamic oppo-
nents in the autonomous racecar problem. In [6], trajec-

tory planning is considered as an optimization problem by
ILTCI, Télécom Paris, Institut Polytechnique de France
{nan.li,laurent.pautet} @telecom-paris.fr
2LIX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris,
France {goubault,putot}@lix.polytechnique.fr

Paris,

Laurent Pautet! Sylvie Putot?

maximizing racecar’s progress while penalizing deviation
from a reference trajectory in a receding horizon way. A
dynamic programming based high level corridor planner is
proposed to generate convex constraints for obstacles. In [7],
a similar idea of maximizing the progress of the racecar is
used. The authors take into consideration the relative position
and velocity between ego vehicle and opponent vehicle for
setting up an extra constraint to avoid a potential collision.
In [8], an off-line viability kernel computation is used to
ensure feasibility, which allows to improve the performance
of the online controller. The authors also take into account
the interaction between two racecars formulated as a bimatrix
game. In above articles, effort is made to maximize racecar’s
progress for indirectly optimizing its lap time performance.

Contributions.

In this work, we explore an alternative approach to achieve
the fastest lap time in head-to-head racecar competition
by extending single-racing mode NMPC-controller in [2].
This approach directly minimizes the progress time as the
objective function while including collision-freeness as con-
straint. We introduce an over-approximation of the vehi-
cle’s shape in a curvilinear coordinates system. We propose
a linear interpolation approach to integrate the opponent
vehicle’s trajectory, which can be computed online, as an
avoidance constraint in the ego vehicle’s trajectory controller.
Mixed-Integer Quadratic Programming (MIQP) is used
to encode and compute, at each step inside the prediction
horizon, the optimal choice among all possible future over-
taking strategies relying on the relative position of the 2
cars (ego vehicle situated at left, right, ahead or behind of
the opponent). We test the feasibility of different overtaking
scenarios with our prototype implementation. The influence
of the length of prediction horizon is also discussed, with the
objective to determine a satisfying trade-off: the prediction
horizon needs to be sufficiently large for the problem to
be always feasible, however larger horizon means larger
optimization time, which may not be compatible with real
time racing.

Organization.

The article is structured as follows. Section II introduces
the track model and vehicle dynamics. Section III presents
the formalization of single-vehicle racing problem and of the
racecar head-to-head competition problem. The racing strat-
egy and corresponding algorithms are described in Section
IV. Section V presents numerical results for the proposed
racing strategies.

II. SYSTEM MODEL

In this section, we introduce a curvilinear coordinate
system (sub-section II-A) which is necessary for making
progress time ¢ as a dependent variable (sub-section II-B) and
for finally making ¢ as a direct optimization objective (next
section). There are also several other advantages of using
a curvilinear system: we can encode progress in a simple
way; we can enforce the controlled trajectories to stay on
track and to not collide with another vehicle using simple
interval constraints.

A. Coordinate System Transformation

S0+ Ls
»

,,,,,,,,, tangent line

center line €y

eyo — Le

eyo — Le
€yo |-
eyo + Le eyo+ Le |----

Fig. 1. Vehicles’ shape is approximated as a set (blue sector) in the
curvilinear coordinates system

As shown in Fig. 1, we adopt a curvilinear coordinate
system [5], in which we represent the relative position of
the vehicle’s center of gravity with respect to its projection
on the track’s center-line as eyq. The projection point is
parametrized by the arc-length s along the center-line.

We now define an over-approximation of the vehicle’s
occupied area in this coordinate system. Its center position
is (S0, ey0). The vehicle’s length and width are L and D,
respectively. We firstly approximate vehicle’s shape as a
circle then project it into curvilinear coordinate. The vehicle’s
occupied area is

(s,ey) € [so — Ls, S0 + Ls| X [eyo — Le, ey0 + Le|

with
VL2 + D?
L= arcsin ,Le:X7X:7+
K(s) = —eyo 2

where k(s) is the curvature of local projection point.

B. Vehicle Dynamics

In this sub-section, we briefly introduce a bicycle dynamic
model extended with a Pacejka lateral tire forces model. For
details, we refer to the work [2], [3] and [6].

In the context of racing, one of main objectives is mini-
mizing the progress time along the track. Using this curvi-
linear coordinate, we can transfer time-dependent system
dynamics to (track) space-dependent dynamics. We can then
explicitly set the time ¢ as the objective function in the
optimization algorithm that will identify the best trajectory.
We define the vehicle’s state (represented in Fig. 1) by
£ = ley, €y, Vg, Uy, w, t, s,d, 0], where ey, ey, are the relative
position of its center of gravity and relative orientation, v, vy

are the longitudinal and lateral velocities, w is the change rate
(angular velocities) of vehicle yaw 1), t is the progress time,
s is the progress length along the center-line of the track, d is
the parameter for the motor engine, § is the vehicle steering
angle. The dynamics of the state vector £ is

d,_deds _de,

at° T dsdt ds
where $ is defined by the kinematic relation [3]:

vzco8(ey) — vysin(ey)
1—ey-k(s) '

Following [2], we define the vehicle dynamics for its
center of gravity, with respect to the arc-length s along the
center-line, as follows:

vy sin(ey) + vy cos(ey)
w—§-K(S)

Cy
€y
Uz %(FR,:E — Fpysiné + muyw)
d |V 1 ~—~(FRr,y + Fr,ycosd — mugw)
L9l =35 FUFrycosd—LFry) |, (D
t 1
S $
d Ad
0 AS

where Ad and A§ are control inputs, i.e. change rates for
control signals d and d; m is the vehicle weight; [y and I,
are the distance between the vehicle center of mass and front
/ rear wheels respectively. The tire’s longitudinal and lateral
force is represented as following:

Fray = (Cmi — Cmavy) - d — Crg — Cra - 02

Fr,y = D, sin(C, arctan(B,ar))

Fr, = Dysin(Cyarctan(Byar)) (2)
ap = arctan((wl, — vy)/vy)
ap = —arctan((wly +vy)/vy) + 9

Cmi,m2,r0,r2, Cr,r, Dy s are empirical parameters of the
Pacejka tire model, for which we take the model identifi-
cation value from [6] for the usage in the simulation part.

III. PROBLEM FORMALIZATION

In this section, we will firstly present the problem formal-
ization for the single vehicle racing problem. The lap time
result of single vehicle racing is a baseline for testing the
vehicle’s performance in multiple vehicle racing. By adding
constraints expressing collision-freeness, we then form a two
vehicles head-to-head time-optimal racing problem.

A. Single Vehicle Racing

Finding a control minimizing the lap time is naturally
expressed as an Optimal Control Problem (OCP). Piecewise
constant control parameterization changes a continuous OCP
into a Model Predictive Control (MPC) problem, which can
be solved efficiently. We use a multiple shooting method
for an horizon of N control-steps. The resulting sets of

constraints can then be solved by Non-Linear Programming
(NLP) optimisation. Following the proposal of [2], we solve
this MPC problem by sequentially solving Quadratic Pro-
grams (QP) based on an exact Hessian matrix expansion.
For the single-vehicle racing problem, the objective is to
minimize the progress time while keeping the car within the
track boundaries. The corresponding NLP-form formaliza-
tion is:
min ty
w; (s)
s.t. 51/’—1-1 = fdyn(gia ui), 7, = O7 ceey N (3)
£i€[§7g]v Q 7N+1
u; € [u,@], i =0,..., N,

where ¢, is the state vector [ey, ey, Uy, Uy, w, T, 8, d, 0] and u;
is the control vector [Ad, Ad].
We add to (3) the following extra constraint which forces
the vehicle to stay within the track:
VL% + D?

_x,x =Y @

—Li+ X <ey, <+ 5

where L; is the half of track length.

B. Two Vehicles Head-to-Head Competition

In two vehicles head-to-head competition, we consider the
scenario in which there exists a Leading Vehicle (LV) ahead
of Ego Vehicle (EV). When LV is closely ahead of EV,
we should make sure that the control strategy of EV will
avoid collision with LV. The collision-avoidance constraint
for EV is that there should be no intersection between their
(approximated) occupied areas:

[sEY — LEV BV 4 [EV]

% [eEV LEV, yO -I-LEV} (5)
ﬂ[Sé LLV LV_|_LLV]

><[LV LLV LV+LLV]_®

€y0 1 €40

We add this extra condition into the single-vehicle racing
formulation (3) to obtain the formalization for the two vehi-
cles competition problem. In the next section we reformulate
this condition into a mixed-integer form.

IV. RACING STRATEGY AND ALGORITHMS

From now on, we consider head-to-head racing. We make
the assumption that when EV is behind LV, it is EV’s
responsibility to avoid collision. We suppose that EV knows
about the opponent’s state information by inference or com-
munication. Moreover, we assume that LV’s trajectory is
calculated by the time-optimal control same with EV but in
the absence of competitors, which is also based on NMPC
model. Indeed, one difficulty comes from that the N different
steps of EV or LV in prediction horizon are discrete N
states based on progress s. For EV at given progress s, we
need to interpolate LV’s position as a function of time t.
We introduce a linear interpolation method in Section IV-A.
LV’s positions are then integrated to establish the collision
avoidance constraints. Combining this extra constraint with

the original NLP formulation (3), we formulate a Mixed-
Integer Quadratic Programming (MIQP) problem to generate
a collision-free time-optimal trajectory for EV in Section I'V-
B.

A. Linear interpolation of LV’s states

EV’s trajectory is discretized at progress points i =
., M. At each of these progress points, EV has a
prediction horizon of length N. The progress time t&" is
the objective to be minimized and the time series t]EV,
7 =1,..., N is needed for inferring LV’s N positions.
According to the planning information of EV at last
progress points ¢ — 1, we initialize a first guess for EV’s
N-steps progress time series. Using formulation (3) and (4),
we can calculate LV’s (discrete) trajectory. Combining with
tf V., we infer LV’s position between its sampling points, say
between [s1V, e, LV t4V] and [s5V, e,V t5V]. We build a
linear interpolation of LV’s position around the located points
atstep 7,5 =1,...,N:

LV _ LV
SJLV(tEV) — i%v_fliv . (t}E‘V _ tLV) + SLV ©
LV LV
EV ¢ —c EV LV LV
eyg (t)= Ziv_tlg\l/ : (tj —177) +eyy

B. Formulation of MIQP problem

During the execution of our MIQP-based NMPC algo-
rithm, we first linearize dynamics and constraints around the
state and control values produced from last progress point i —
1. LV’s positions (s*V,elV);,j = 1,..., N are interpolated
as explained in Sectlon IV-A. After solvmg a single MIQP,
we generate a new [N-steps prediction. If the corresponding
solution does not reach the required precision, we linearize
again the dynamics and constraints around the new state and
control values. We use the Karush—Kuhn-Tucker (KKT) con-
dition as the precision indicator for indicating the optimality
of the solution and the violation of constraints. If the KKT
value does not reach the required precision after the pre-
defined maximum iteration number, the solution taken from
the last progress point 7 — 1 is reused.

The key point here is to build the MIQP formulation
form, i.e. to transfer the general definition of the collision-
avoidance constraint (formulation (5)) into a mixed-integer
form. For EV at progress point i € (1, ..., M), the collision-
avoidance constraint for each step ;7 = 1,..,N in the
prediction horizon is:

(A4) 57V + (Ls)7V <57V = (Ls)7Y

J
OR (B) sPV + (Ly)PY < skV —(L)FY

j
(7

OR (C) eijV + (Le)LV < eijV - (Le)jEV

OR (D) e,V + (L)} < eV — (L)}

We name each of these constraints using functions f4, f5,
fc and fp so that these become: (fa(j) < 0)V (fe(j) <
0) vV (fe(d) £0) Vv (fp(j) <0).

The above constraints correspond to the following config-
urations: (A) EV is ahead of LV; (B) EV is behind LV; (C)
EV is at the left of LV; (D) EV is at the right of LV. However

there is an overlap among these 4 configurations. We refine
them into 4 new non-overlapping configurations, by adding
to the cases (C) and (D) the condition that EV is neither
totally ahead of LV nor totally behind of LV. We formally
write them as:

A(fa(d) > O0A fa(j) > 0))
fp(G) SOA(fa(jd) > 0A f(j) >0))

We then use the big-M method [9] to encode this disjunc-
tion into a more standard set of constraints:

fa(G) <ea-M —fB(j) <cs- M
() <c2- M fp(j) <ca-M (8)
fe(j) <e3-M —fa(j) <ea-M
—fa(j) <cz-M —fB(j) <ca-M

where ¢ € {0,1},k = 1,2,3,4 are binary variables
satisfying ¢1 + co + c3 + ¢4 < 3, and M is a sufficiently
large positive number. We finally use the method from [10]
to reduce the number of binary variables from 4 to 2:

fa(j) <ar-M —fB(j) <as- M
fB(j) <az-M Ip(j) <as- M 9)
fe(j) <az-M —fa(j) <ay-M
—fa(j) <az-M —fB(j) <as-M

where a1 =1+4c¢1 —¢c9, as =1 —c¢1 + 2, a3 = ¢ + Ca,
a4 = 2 —c1 — co, c1 and co are binary variables. If ¢; =
0,co = 1, the first constraint is active and other constraints
are relaxed. If ¢c; = 1, co = 0, the second constraint is active.
If ¢; = co = 0, the third group of constraint is active. If
c1 = cg = 1, the last group of constraint is active.

Combining (3), (4), (6) and the constraints (9) for all
predicted step j = 1,..., N, we formulate a MIQP problem
which can be solved in sequence by a MIQP solver to
generate a [N -steps no-collision time-optimal control strategy
for EV at progress point .

V. SIMULATION RESULTS
A. Implementation and experimental setup

Based on our problem formalization, we use the ACADO
Code Generation Tool [11] to generate a framework for
sequentially solving Hessian based QP problem [12]. An
interface to QP solvers is provided inside this framework.
We selected the gpOASES [13] as QP solver option for the
single-vehicle mode. We also wrote a wrapper to call the
GURORBI [14] solver for using MIQP method in head-to-
head racing mode. The following experiments are performed
on a standard laptop featuring an Intel i7 CPU and 32 GB
of RAM under Ubuntu 18.04.

We test two classic tracks for racecars: track 1, used
in [2] with full length of 8.7 m and track 2, used in [6]
with full length of 18.0 m. Both track widths are 0.34 m.

TABLE I
PHYSICAL CONSTRAINT FOR STATE VARIABLES

Variable

Range

Variable Range
ey [—0.17, +0.17] m 7 1.0, 11.0]
€y [—1.5,41.5] rad 5 [~0.6, +0.6] rad
Uz [[O'f%’ “1'%]] m//s Ad [~10.0, +10.0] s~
Vy —1.0,+1.0] m/s Y. :
" [~8.0,+8.0] rad Ad [-10.0,+10.0] rad/s

We use the vehicle model identification described in [6].
Used constraints are listed in Table I. We assume that LV
has identical model parameters as EV but with a different
limitation for the maximum longitudinal velocity - v, €
[0.05,1.2] - for ensuring the possibility for EV to overtake
LV. In the simulation, LV’s trajectory is calculated using (3)
and (4) off-line for simplicity. In a real-world setting, LV’s
trajectory can be calculated online.

We set the KKT value to 10™#: the optimization process
ends when the KKT condition is lower than this value,
which means that it is optimal enough and satisfies well the
constraints. The maximum number of iterations for the MIP
method is 20. The step length in the prediction horizon is
selected to be 0.06 m which is close to the length of vehicles.
The horizon length N has an important impact on the lap
time performance and calculation time, this is discussed in
the next sub-section.

For the simulation of single-vehicle racing, EV is initially
located at the (s, e,) = (0,0) and finishes a full lap.

For two-car head-to-head racing, LV is initially located
at point (0,0). EV is located at 3 possible initial po-
sitions - (0,0), (0,—0.1) and (0,0.1) - to express a
certain diversity of competition scenarios. In some test
scenarios, EV starts running after LV reaches progress
length of 0.1 m,0.2 m,...,0.8 m for track 1 and
0.1 m,0.2 m,...,1.5 m for track 2. The vehicles’ initial
longitudinal speed is set to 1.0 m/s. This constitutes 24
and 45 scenarios respectively for track 1 and track 2. These
cover overtaking at many different positions in these two
track layouts.

B. Single-vehicle racing performance

TABLE I
SIMULATION RESULT FOR THE SINGLE-VEHICLE RACING

Horizon length Mean calculation

N Lap time [s] time per step [s]
15 4.852 0.137
Track 20 4.802 0.171
1 30 4.773 0.245
40 4.768 0.355
50 4.767 0.483
15 10.189 0.118
Track 20 10.107 0.140
5 30 10.064 0.205
40 10.059 0.307
50 10.059 0.460

We test the single-vehicle racing scenario as a baseline
to compare different lengths N of prediction horizon under

current configuration. The result is shown in Table II. For
track 1, the lap times achieved for NV = 40 and 50 indicate
that the minimum lap time is around 4.767 s. This shows that
N = 30 achieves a good enough lap time (0.13% slower than
N = 50) while maintaining relatively low calculation time.
N = 15 is also interesting because of its low computational
cost. Experiments on track 2 show very similar results. We
use these two different lengths of prediction horizon N = 15
and N = 30 to perform the experiments in the case of two-
vehicles head-to-head competition.

C. Head-to-head racing performance

TABLE III
SIMULATION RESULT FOR TWO CAR HEAD-TO-HEAD RACING
of cases Ave_r age.
. Average | calculation time
Horizon length where . -
.. lap time | per step before
N collision .
h [s] overtaking
appens Is]
Track 15 3/24 4.942 0.247
1 30 0/24 4.899 0.905
Track 15 0/45 10.277 0.243
2 30 0/45 10.148 0.832

Table III summarizes the lap time and computation time
for all scenarios. As can be expected, a longer horizon yields
better lap time and a higher computation cost.

The trade-off between trajectory optimality and compu-
tation time naturally depends on the available computing
resources. The computational cost increases with the pre-
diction horizon. On the other hand, a sufficient horizon is
necessary for finding feasible trajectories. Three failed cases
with N = 15 on track 1 are due to a too short time horizon:
EV is too close to LV with a too high (longitudinal or
angular) speed and it has not predicted this situation in
advance because of a short horizon.

move forward
direction

_~“current LV
location

current EV
location

step 30 | step 30

Fig. 2. A typical example of predicted trajectories of EV and LV.
Rectangles: EV (blue) and LV (green) at actual location, followed by
predicted positions at steps 5 / 10 / 15 / 20 / 25 / 30; dot lines: EV’s
and LV’s predicted trajectories.

A typical example of calculation result for a given progress
point is presented in Fig. 2. It corresponds to one of the 24
scenarios that we test on track 1: EV is initially located at
(0,0) and starts running when LV reaches 0.8 m. The figure
shows the moment that EV arrives at s = 5.04 m.

From this example, we observed the following behavior in
EV’s prediction horizon: EV plans to follow LV from step
1 to 10 (condition B in (7) is active), to overtake LV at the
right from step 11 to 19 (condition D in (7) is active), to
be completely ahead of LV at step 20 (condition A in (7)
is active) and to keep this advantage until step 26, to keep
at the left of LV at the last 4 steps (condition C in (7) is
active).

D. Calculation time issues

The previous sub-sections demonstrated the good behavior
of the algorithm. However, with the current configuration,
the average progress time per step is about 30 ms which is
lower than the current calculation time per step (for N=15, it
is around 140 ms on single mode and 250 ms on head-to-
head racing mode on average). It shows the difficulty of the
implementation on a real-world racecar of the NMPC-based
controller with the MIQP method encoding non-collision
constraints.

There are several possibilities to solve this problem in the
future: one possibility is to simplify the decision combina-
torics using the observed fact that the overtaking strategy
is often quite stable between successive steps (for example
in Fig. 2, we showed successive following, successive right-
overtaking and successive left-overtaking behavior); another
possibility is to explore the problem structure of MIQP
method and take the advantage of the multi-core system or
the GPU (such as the GPU that equips the Fltenth racecar).

VI. CONCLUSION

Different from the previous effort in literature that forms
an optimization problem to maximize the racecar’s progress
distance, we explore an alternative approach to achieve the
best lap time which sets the progress time as a direct
objective. We set up the method for approximating vehicle’s
shape in curvilinear coordinate system, integrating oppo-
nent’s trajectory into optimization constraints, and modelling
the collision-avoidance constraints using mixed-integer form.
The simulation on our prototype implementation showed the
effectiveness of the proposed algorithm.

In future work, we consider further focusing on the
feasibility of these methods in a real-world setting, and in
particular implementing them on a Fltenth racecar. This
involves studying dynamic adaptation of prediction hori-
zons, studying strategies that reduce the combinatorics of
constraints, and taking advantage of the computation on
multi-core platforms. Finally, in the longer term we consider
combining such approach with online reachability analysis
that monitors safety of decisions.

[1]

[2]

[3]

[4]
[5]

[6]

[7]

[8]

[9]
[10]

(11]

[12]

[13]

[14]

REFERENCES

A. Gray, Y. Gao, T. Lin, J. K. Hedrick, H. E. Tseng, and F. Borrelli,
“Predictive control for agile semi-autonomous ground vehicles using
motion primitives,” 2012 American Control Conference (ACC), pp.
4239-4244, 2012.

R. Verschueren, M. Zanon, R. Quirynen, and M. Diehl, “Time-optimal
race car driving using an online exact hessian based nonlinear mpc
algorithm,” ECC 2016, pp. 141-147.

J. V. Frasch, A. Gray, M. Zanon, H. J. Ferreau, S. Sager, F. Borrelli,
and M. Diehl, “An auto-generated nonlinear mpc algorithm for real-
time obstacle avoidance of ground vehicles,” 2013 European Control
Conference, pp. 41364141, 2013.

F. Molinari, N. N. Anh, and L. del Re, “Efficient mixed integer
programming for autonomous overtaking,” ACC 2017.

Y. Gao, A. Gray, J. V. Frasch, T. Lin, E. Tseng, J. K. Hedrick,
and F. Borrelli, “Spatial predictive control for agile semi-autonomous
ground vehicles,” in [1th International Symposium on Advanced
Vehicle Control, no. 2, 2012, pp. 1-6.

A. Liniger, A. Domahidi, and M. Morari, “Optimization-based au-
tonomous racing of 1: 43 scale rc cars,” ArXiv abs/1711.07300, 2017.
M. Kloock, P. Scheffe, L. Botz, J. Maczijewski, B. Alriface, and
S. Kowalewski, “Networked model predictive vehicle race control,”
2019 IEEE Intelligent Transportation Systems Conference (ITSC).

A. Liniger and J. Lygeros, “A noncooperative game approach to au-
tonomous racing,” IEEE Transactions on Control Systems Technology,
vol. 28, pp. 884-897, 2020.

S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex optimization.
Cambridge university press, 2004.

I. Prodan, S. Olaru, C. Stoica, and S.-I. Niculescu, “Collision avoid-
ance and path following for multi-agent dynamical systems,” in /CCAS
2010, pp. 1930-1935.

B. Houska, H. J. Ferreau, and M. Diehl, “An auto-generated real-
time iteration algorithm for nonlinear mpc in the microsecond range,”
Autom., vol. 47, pp. 2279-2285, 2011.

P. T. Boggs and J. W. Tolle, “Sequential quadratic programming,” Acta
numerica, vol. 4, no. 1, pp. 1-51, 1995.

H. J. Ferreau, C. Kirches, A. Potschka, H. G. Bock, and M. Diehl,
“gpoases: A parametric active-set algorithm for quadratic program-
ming,” Mathematical Programming Computation, vol. 6, no. 4, 2014.
“Inc. gurobi optimizer reference manual, 2015.”

