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Abstract— Running a simulation-based autonomous race is a
complex software testing task. The autonomy software has to be
closed with a simulator with proper interfaces, and the tests for
this closed system have to evaluate collisions and other scoring
functions, ideally with deterministic results. Since autonomy
software is constructed as a pipeline of heterogeneous modules,
achieving scalability and determinism of these tests is a chal-
lenge. In this work, we present Autonomous System Operations
(AutOps) a continuous integration (CI) and testing framework
for autonomy software and we evaluate it in the context of a
new autonomous racing competition called GRAIC, currently
integrated with the CARLA vehicle simulator. AutOps is
built using Jenkins, Docker, and Amazon Web Services. It
allows completely automated, concurrent testing of controllers
in complex simulated environments. We report experimental
results evaluating the determinism and test isolation achieved
with our design.

I. INTRODUCTION

There has been an explosion of interest around au-
tonomous racing in recent years [1]–[8]. In this paper, we
explore the challenging problem of software testing for such
autonomous races. Running a simulation-based race poses a
difficult testing problem: the autonomy software has to be
executed in a simulation environment and the results have
to be computed. In turn, these results depend on collision
detection and timings. Autonomous software is constructed
as a pipeline of different modules for perception, planning,
decision-making, and controls. These modules are highly
heterogenous in terms of the data structures, interfaces,
levels-of concurrency, sparsity of computations, and types of
libraries used for implementing them. Heterogeneity makes
end-to-end testing challenging. Tests can be flaky [9] and
individual tests are usually excessively long. Additionally,
tests can be difficult to automate because the pipeline must
be closed and instantiated with a simulation environment.

In this paper, we show how some of these challenges
can be met by a continuous integration (CI) pipeline for
autonomy software. Our prototype system is called AutOps.
Continuous integration and delivery (CI/CD) are software
engineering techniques that allow developers to commit code
changes frequently to a version control system such that
each code commit triggers a large number of automated
builds, tests, and possibly even deployments. Continuous
practices have been shown to dramatically reduce the cost
and the time for feedback, patching, and releases for large
codebases [10]. CI has become standard practice, and in-
creasingly, advanced testing and verification approaches are
being deployed through CI at software firms like Google,
Amazon, and Facebook [11]–[15].

In designing AutOps for testing autonomy software,
we have aimed to make testing automatic, deterministic,

concurrent, and non-interfering (for concurrent instances).
These requirements are explained in more detail in Sec-
tion III. Our implementation relies on state-of-the-art CI,
serverless computing, and containerization tools like Jenkins,
AWS Lambda, Docker. We evaluate AutOps in the context
of a new autonomous racing competition called GRAIC
(Section II). The evaluations show that while AutOps can
achieve full automation, concurrency, and some degree of
test-isolation, determinism remains a challenge for certain
types of autonomous races.

II. GRAIC SOFTWARE FRAMEWORK

Why yet another race? Recently, there has been signif-
icant advances in controller synthesis algorithms [16]–[22]
which is an important sub-problem of autonomous racing.
At the same time, we are still sorely missing benchmark
suites for comparing these algorithms. Unlike perception
benchmarks like ImageNet [23], creating benchmarks for
control and autonomy is much more challenging because
they require a complete executable specification for a closed-
loop system, the dynamics of the ego vehicle, the static
environment, the behaviors of active and passive agents in
the environment, their interactions, and the perception and
control interfaces for the vehicle. Each of the controller
synthesis tools mentioned above, for example, use unique ve-
hicle models, different computing platforms (Matlab, Python,
Java), and different abstractions for perception, all of which
make fair comparison a Herculean task.

Our response to this challenge is the Generalized Rac-
ing Intelligence Competition (GRAIC) [24] benchmarking
framework for autonomous racing. Figure 1 is an example
screenshot from GRAIC. In this competition, each participant
creates a controller function that drives an ego-vehicle in
different simulated tracks with active and passive obstacles.
Unlike the competitions mentioned above, the GRAIC frame-
work can work with arbitrary vehicle models. Our AutOps
pipeline (Section III) tests the participant’s controller code
automatically on four different vehicles and three different
tracks, and generates a score which depends on safety and
speed.

This competition focuses on racing strategy, decision, and
control, and not on perception. Because of this focus, we
provide a perception oracle. All the interfaces built using
Robot Operating System (ROS) [25]. Currently GRAIC uses
the CARLA Simulator (CARLA) [26] and because of the
standard ROS interfaces, in the future it should be possible,
and indeed we plan to, connect it with other simulators
like Gazebo [27], FlightMare [28]. Figure 2 shows the
architecture of GRAIC.



Fig. 1: Screenshot of ego vehicles point of view with perception
oracle outputs (left). The lane markers are shown in black, the
dynamic obstacles are bounded with red rectangles, and the goal
waypoints are shown in green. One of the race tracks is shown on
the right.

In this section, we first discuss our perception oracle
abstraction. Next, we detail the vehicle control interface.
Finally, we describe the different scenarios, environments,
and race configurations that the competitors algorithms will
have to deal with.

Perception Oracle (PO): GRAIC’s perception oracle
periodically outputs ground-truth object detection results in
the neighborhood of the ego vehicle as shown in Figure 1.
This notion of a PO for control design was introduced
in [19]. In more detail, the PO publishes information in
several rostopics for (i) obstacles like vehicles, cyclists,
and pedestrians, (ii) forthcoming waypoints, (iii) current and
adjacent lanes, and (iv) global position, orientation, and
velocity of the ego vehicle.

Vehicle Control Interface: We have two types of vehicle
models simulated in GRAIC: (a) complex vehicle models
from CARLA which can be four or two-wheel vehicles
and (b) kinematic Dubin-type models. The CARLA models
are not available to the participants in any analytical form,
beyond some basic information such as length, mass, and
wheelbase. For the kinematic Dubin-type model, detailed
lateral and longitudinal dynamics are released for this type
of vehicles. In GRAIC, the controller function has to publish
to the same rostopics to control both types of vehicles. These
rostopics can either be ackermann control from ROS or
vehicle control from CARLA.

Tracks, scenarios, and race configurations: To test or
race autonomy software (controller code, perception oracle)
we have to fix a vehicle, a track, and the behavior of
all other agents on the track. In the parlance of CARLA,
which we adopt for this paper, a scenario is a set of
actors (vehicles, pedestrians, etc.) with specific behavior
(e.g., pedestrian crossing the road) that can be spawned at
particular positions (spawn points) on a track. The spawning
can be controlled by triggers such as the ego vehicle coming
within some distance of the spawn-point. The collection of
all the scenarios and spawn points together define what we
call a race configuration or simply a race.

Once the ego vehicle and its software is fixed, and a race is
fixed, if the agents are deterministic, then the overall closed
system should have a unique execution. This is an idealized
view of the closed system. Even with perfectly deterministic
algorithms for the ego vehicle and other agents, the ROS

Fig. 2: The architecture of the GRAIC software framework.
The participants submit controller code, which is composed
with the perception oracle, a vehicle system, a track, and a
scenario for executing a race. The evaluation module checks
for collisions and calculates the score based on collisions
and timing.

interfaces and simulators introduce enough nondeterminism
and break this ideal. As we shall see in Section IV, this
makes testing challenging. We will also discuss our design
of GRAIC for making the races more deterministic and the
experimental results.

III. AUTOPS : CI PIPELINE FOR AUTONOMOUS RACING

In this section, we discuss the design of AutOps—an end-
to-end pipeline for continuous testing of autonomous racing
software. We discuss AutOps as it is currently deployed for
GRAIC at CPS-IoTWeek 2021 [24].

The key design requirements of AutOps are: (i) Auto-
mated. When a participant submits a controller, tests/races
for different vehicles and tracks should be triggered auto-
matically, i.e., without manual intervention. (ii) Concurrent.
A set of controllers should be testable on different tracks,
concurrently on the same testing workstation. (iii) Determin-
istic. For a deterministic race configuration and controller,
the result or the race score should be unique. (iv) Non-
Interference Concurrent tests should have minimal impact
on each other in performance.

Fig. 3: AutOps continuous integration and testing system.

The design of AutOps (Figure 3) consists of three main
columns: (1) the code source, (2) the build server, and



(3) the results delivery subsystem. The participants upload
their controller code to the code source, then the build
server extracts the code to compile, launch, and execute the
appropriate races/tests. Finally, the results delivery subsystem
aggregates and sends out the results, logs, and videos, as
emails or web updates.

A. Code Source

In our design, the code source is developed using AWS
S3 Storage and AWS Lambda. AWS S3 cloud storage
stores the participant’s submitted controller. AWS Lambda
is a serverless computing service that can execute programs
without provisioning and managing servers. Once controller
files are uploaded, AWS S3 triggers AWS Lambda. AWS
Lambda contains a Python program which sends a HTTP
request to notify our Build Server to extract controller files
and perform further processing. In this way, the tests can be
automatically triggered by submissions.

B. Build Server

The build server is the heart of AutOps and is responsible
for creating complete executable containers for each race.

A container provides a computing environment for soft-
ware applications to run in virtual isolation, on the same
physical platform or on the cloud. Inside the container, pro-
grams and dependencies are packaged so that the container
can be quickly and reliably run across different hosting
operating systems (Linux, Windows, MacOS) on different
hardware platforms (desktop, laptops, servers, etc.). The con-
tainerization tool we use in AutOps is Docker [29]. When
multiple Docker containers run concurrently, the software in
each container are encapsulated and isolated. Each container
runs on virtual memory so that it is separated from the host
operating system. This level of encapsulation and isolation
ensures the security for both the container and host operating
system.
AutOps uses continuous integration (CI). Specifically,

the Jenkins [30] CI tool is used to run the scripts that
orchestrate the execution of races in Docker containers. As
shown in Figure 3, both Jenkins and GRAIC are deployed
in different Docker containers for isolation. In the Jenkins
Docker, we configure a multi-stage pipeline to perform the
workflow needed for setting up the GRAIC and executing
controller code. In a GRAIC Docker, there are 4 main
components: CARLA, ROS, GRAIC, and the participants’
submitted controller files. Multiple GRAIC containers can
run concurrently with CARLA and ROS set to run on
different network ports.

Our scripts through Jenkins orchestrate the GRAIC con-
tainers by sending out commands to every GRAIC container
to launch CARLA, ROS, and GRAIC. The controller files
are extracted from the code source by Jenkins and sent
to every GRAIC container. After the software components
are set up, the execution of the race (with the participants’
controller) begins. During execution, Jenkins can monitor
and log the performance and output of GRAIC containers.
Once the executions are complete, Jenkins can load the

results including score files, logs, and videos from every
GRAIC container.

C. Result Delivery System
When the tests are finished, the results are extracted from

the build server. The results include score, runtime logs, and
videos recorded during the execution of vehicle controller.
The score is calculated based on some score function. For
example, this can be a summation of time (in seconds) that
the ego vehicle spends to reach the next milestone waypoint.
During the race, if the ego vehicle hits an obstacle or deviates
from the road, penalty points are added to the score. The
controllers that receive lower scores are ranked higher in the
leader boards. A video is created by subscribing to a rostopic
that publishes images from a third-person view camera of the
ego vehicle. The output images are transformed into a video.
Finally, the results are uploaded to online leader boards and
the competitors are notified via email.

IV. EXPERIMENTAL EVALUATION

In this section, we present a preliminary evaluation of
AutOps with respect to the determinism and isolation
requirements. All tests reported here are conducted on
an Ubuntu Desktop with Intel Xeon(R) Silver 4110 CPU
(2.10GHz), 32 GB RAM, and Nvidia Quadro P5000 GPU
(16 GB).

A. More Deterministic Races
Determinism is necessary for repeatability of tests. With-

out determinism, the race winner may not be determinable
or the results may be unfair. Achieving determinism of
complex, system-level tests is known to be a challenging
problem [31]. The problem is exacerbated for GRAIC since
vehicle simulators are prone to introduce nondeterminism
through collisions, concurrency, and complex dynamical
models. In our own experiments, the simulations of a simple
vision-based, lane-tracking PID controller diverged signifi-
cantly from identical initial conditions because of differences
in ROS message update delays.

In our initial implementation of GRAIC, the races were
far from deterministic because the spawning of scenarios
was randomized and also the start-ups of the controller, the
CARLA simulator, and the ROS nodes were not synchro-
nized. Towards having more deterministic races we have
taken the following measures:

• We configured ROS and CARLA to run in synchronous
mode by setting the ROS to be the only CARLA client
that could perform the tick() operation for advancing
simulation time. This minimizes error caused by the
delay of control input transported over ROS networks.

• We used bash scripts to ensure that the initiation of
the above modules is done in the exact order and that
the controller code is started at the same state in the
environment.

• We used the CARLA scenario_runner [32] frame-
work to customize the triggering of scenarios. Each
scenario is triggered when the ego vehicle approaches
a spawn point on the tracks.



Fig. 4: Raw scores and standard deviations of scores (top) and final
waypoint passage time (bottom) before and after we made races
more deterministic. T1 denotes “Track1”, T2 denotes “Track2”, MF
denotes the CARLA vehicle, MB denotes the kinematic vehicle, and
NS denotes a race with no obstacles.

Results: We tested AutOps running GRAIC with the
two tracks and two types of vehicle models. For each of these
four races we look at results both before and after applying
the determinism settings described above. The obstacle in
these tests is another vehicle that moves forward with a
constant speed. For testing before applying determinism
settings, the obstacle vehicle can appear anywhere along
the track. In contrast, for testing after applying determinism
settings, the vehicle starts to move when the ego vehicle
approaches within a certain fixed distance. This gives us
4 race configurations: Track1 CARLA vehicle (T1-MF),
Track1 kinematic vehicle (T1-MB), Track2 CARLA vehicle
(T2-MF), Track2 kinematic vehicle (T2-MB). In addition,
we have a fifth race configuration without obstacles on the
track (T1-NS).

Using AutOps we ran 28 tests with a baseline vehicle
controller, on each these five configurations, both before
and after applying the determinism settings. The CPU usage
across different races stayed between 30-35% and the aver-
age memory usage was around 4.5%. The collected scores
and race completion times are shown in Figure 4. It is clear

from these plots that the measures taken above make the
races more deterministic. On average, the standard deviation
of the score is decreased by 70% across the board. We
also observe that the races with fewer collisions are more
deterministic; an extreme version of this is the one with no
obstacles (T1-NS).

Discussion: We believe that the remaining variations in
the tests have two contributing factors, and we do not see a
clear remedy for either: (1) ROS’s TCP/IP-based messaging.
The delay in transmission of packets can result in the actuator
receiving control inputs at slightly different timestamps;
eventually, it leads to discrepancy in the behavior of ego-
vehicle. Upgrading to ROS2 [33] with support of real-time
programming can potentially alleviate this issue. (2) Non-
determinism introduced by collisions and contact [34]. Every
time the ego vehicle collides with an obstacle in a given race
configuration, the outcome can be different. As shown in
Figure 4, the standard deviation of the race with no collisions
is the smallest. These two sources of nondeterminism are
likely to bedevil future autonomous racing competitions.

B. Interference across Concurrent Instances

In order to study the non-interference requirement of
AutOps, we have conducted another set of experiments.
Here, we fix a race configuration across all runs. First, we run
a race by itself. Next, we run two races concurrently. Then,
we run three races concurrently. We continue this until we
run up to five races concurrently. For each of these races, we
report the returned score and the total CPU usage.

Results: We are reassured to observe that as the number
of concurrent instances increases, the CPU usage percentage
increases as expected. Furthermore, the scores for races
remain roughly the same. This suggests that scaling up
the number of concurrent executions has limited effect on
individual races.

Discussion: We are currently exploring the limits
of non-interference in AutOps. We expect the nice non-
interference observed in the above experiment to break once
the number of instances and the load of each race reaches
the limits of compute capability the underlying workstation.

V. CONCLUSIONS

We explored the problem of testing for autonomous sys-
tems and introduced introduced a continuous integration
(CI) pipeline for autonomy software called AutOps, which
is implemented using Jenkins, Amazon Web Services, and
Docker. We evaluated AutOps in the context of a compe-
tition called GRAIC. Our experiments with AutOps show
that it can achieve fully automatic and concurrently running
test instances; it also offers test-isolation up to a point.
The experiments confirm the difficulty of achieving full
determinism for testing autonomous races. The testing ca-
pabilities of AutOps are exciting, as it allows for automatic
benchmarking of various control and autonomy approaches.
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