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Abstract— Deep Neural Networks (DNNs) which, are trained
end-to-end, have been successfully applied to solve complex
problems that we have not been able to solve in past decades.
Autonomous driving is one of the most complex problems which
is yet to be completely solved and autonomous racing adds more
complexity and exciting challenges to this problem. Towards
the challenge of applying end-to-end learning to autonomous
racing, this paper shows results on two aspects: (1) Analyzing
the relationship between the driving data used for training and
the maximum speed at which the DNN can be successfully
applied for predicting steering angle, (2) Neural network
architecture and training methodology for learning steering and
throttle without any feedback or recurrent connections.

I. INTRODUCTION

High speed autonomous racing presents us with unique
challenges that have gained recent attention after signifi-
cant progress in urban autonomous driving. Investigating
the deep-learning-based end-to-end learning solution to au-
tonomous racing from a data-centric perspective is novel
and no prior work has investigated this approach earlier to
the best of our knowledge. Since this approach is new, we
have to find and address the challenges associated with Data
Collection, Deep Neural Network (DNN) architectures, as
well as the suitable training methodology for this specific
problem.

With Deep learning, it is typically the case that once
we have a good dataset for a problem, multiple DNNs can
achieve good performance. We call here the approach of
exploring different architectures for solving the problem a
model-centric approach. For example, an image recognition
problem with the ILSVRC dataset [14] can be solved with
DNNs such as Alexnet [8], ResNet [4] and GoogleNet [15].
In addition to that, these architectures can be successfully
applied to similar other learning problems [9]. Since we
can adopt the DNNs from other learning problems that are
similar, to solve a new learning problem, a data-centric
approach to investigate the properties of a successful data
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collection strategy in the initial stages of tackling the con-
sidered new problem is necessary. The urban autonomous
driving problem is similar to autonomous racing with one
major difference related to speed of operation; therefore, we
can adopt DNNs from them and explore them more once we
address the dataset challenges for autonomous racing, with
particular emphasis on maximum speed encountered during
both training and inference.

First, with a data-centric approach, we explore the data
with a fixed DNN similar to Nvidia’s self-driving-car Neural
Network Architecture [1]. There are two reasons for selecting
Nvidia’s architecture, 1. End-to-end learning with this archi-
tecture was demonstrated to be successful, 2. Potential for
achieving fast response time due to the simplified nature of
the architecture, which is necessary for high-speed driving.
We here investigate successful data collection strategies
for autonomous racing with a particular emphasis on
the relationship between the amount of data collected
and the maximum speed encountered during training for
a steering prediction learning task. Results are validated
on two different tracks using the Unity simulation platform
[6]. On Track 1, we show results at constant speeds of 80
mph, 50 mph, and 30 mph, and on Track 2, we show results
at constant speeds of 60 mph, 50 mph, and 30 mph. For
speeds beyond 80 mph on Track 1 and 60 mph on Track 2,
the throttle has to be varied requiring a throttle-dependent
steering value. To investigate optimal data collection strate-
gies in operating regimes with dependent steering and throttle
values, we first need to solve the problem of joint steering
and throttle prediction. Our second contribution solves this
problem as outlined below.

Second, unlike previous literature, we show in this
work that throttle prediction can be carried out via:
1. Learned convolutional layer weights from steering
training without retraining them during throttle learning,
and 2. Without using any feedback links [11], [3] or
recurrence (LSTM) [17], [16], [5] in the deep neural
network architecture. This is achieved with a carefully
designed training methodology explained in detail in Section
V. We show that in order to jointly learn steering and
throttle, we can use the same convolutional features learned
during the steering training and only train subsequent fully
connected layers dedicated for throttle inference. To validate
the results, we demonstrate this on two different tracks.
Video links given in section V results.



II. EXPERIMENTAL SETUP

A. Simulator
A custom simulator was built by importing Udacity self-

driving-car-sim1 into the Unity platform [6] and modifying
it to have variable maximum speed as well as the ability
to build new tracks. It uses the same car model which
is provided by Udacity self-driving-car-sim. We built two
new tracks (1) Track 1, which is similar to the Indy Moto
Speedway (IMS) (2) Track 2, which is customly designed
to have sharp right and left turns. Track 1 and Track 2 are
≈ 1.6 miles and ≈ 2.3 miles long, respectively.

Fig. 1: Track 1: Akin IMS
Fig. 2: Track 2: Custom track
with sharp right and left turns

Fig. 3: Track 1: Simulator and
car

Fig. 4: Track 2: Simulator and
car

The car has three cameras placed on/near the dashboard,
looking left, right, and center/front. In training mode, the
simulator can record images from all three cameras, steering,
throttle, and speed data at a frequency of 10 Hz.

B. Learning Methodology
Direct Policy Learning [13] [12], a type of Imitation

Learning is used to train all the Neural Network mod-
els in this work. Direct policy learning is a combination
of Behavioural Cloning and Data Aggregation. Behavioral
cloning is supervised learning with labels provided by the
expert on the problem. Data Aggregation [13] is done by
having an expert driver in the feedback loop to improve
the model’s performance iteratively. Figure 5 illustrates the
training methodology with an expert in the loop. The ex-
pert helps to remove the undesirable driving patterns by
correcting/modifying old training data and also provides new
training data to improve driving patterns based on significant
observations during testing.

III. DATA COLLECTION GUIDELINES: A MAXIMUM
SPEED PERSPECTIVE

The key element to racing is driving at high speeds on
an optimal path around the racing track. From our experi-
ments, we observe that merely providing driving data on the

1https://github.com/udacity/self-driving-car-sim

Fig. 5: Direct Policy Learning

optimal path is not sufficient for good autonomous driving
performance, as the car would typically crash when slightly
deviating from the training path. Hence, we break the racing
data collection problem down into two stages. First, to learn
the ability to drive at high speeds in different situations on
track, and then second to learn to drive on an optimal path.
We address the first problem in this work, and the second
problem of learning the ability to drive on an optimal path
will be explored in future work.

A. Driving Data Collection Strategy

The car on a racing track can run into a wide range of
situations; therefore, for it to generalize well on the track,
along with amount of driving data, we observe that diversity
in data is key to learning. More specifically, we followed
the guidelines below to diverse training data.

• Driving on both right and left lanes.
• Changing lanes at different points of the track.
• Driving closer to the edges and coming back towards the

center of the track. We observed that this is especially
needed for tracks with sharp turns.

Table 1 lists the number of laps collected on each track at
different constant speeds. We note that the number of laps
provided here can be varied with roughly ±3 laps to produce
similar results.

TABLE I: Data in Number of laps

Track
Speed

80 mph / 60 mph 50 mph 30 mph

Track 1 65 (80 mph) 20 15
Track 2 50 (60 mph) 25 15

During the data collection process, the simulator records
images with width and height of 320 x 160 from all three
cameras, steering values ranging from -1 to +1, throttle
values between 0 and 1 and speed data. During training
and testing, the input image is cropped and resized to
width and height of 160 x 80. We note that the height is
cropped to remove the upper part of the image corresponding
to the background sky. Data augmentation is used during
the training process via introducing vertical and horizontal



translation of images and horizontal flipping with inverting
the sign of the corresponding steering value.

B. Deep Neural Network
The deep neural network architecture from Nvidia [1] was

used for learning the steering angle. A schematic of the
architecture is shown Figure 6.

C. Training and Testing
Racing is about optimizing performance on a given spe-

cific track [10]. Our goal is to learn optimal control on
a given specific track using a neural network model that
generalizes for different and challenging situations during
high-speed driving. To achieve that, we are training the
model with large and diverse data while testing on the
same track. Generalizability of high speed driving skills for
different tracks will be explored in future work.

Training in this problem is an iterative process as described
above in Section II-B. We first collect data corresponding
to a pre-specified number of laps, then train the model
using the Mean Squared Error (MSE) loss and the Adaptive
Moment estimation (Adam) optimizer [7] with a learning
rate of 0.0001. We then evaluate the model’s performance on
the same track, and test specifically for driving stability. If
unstable driving is observed (e.g., the car crashes), we collect
more training laps or correct the old data by removing unde-
sired driving patterns and retrain the network. This process
continues until the desired maximum speed is maintained in
a stable manner. The appropriate number of laps to use for
data collection, shown in Table I, is found using this iterative
process. The amount of data/number of laps required for
learning depends on the track and car speed at which training
data is collected. Figure 6 shows the Deep Neural Network
architecture used for learning steering control. We observe
that as the number of laps used for training increases,
the number of training epochs has to be increased. For a
number of laps less than 20, the model was trained on 1000
epochs. For a number of laps greater than 20, the model was
trained for 2000-3000 epochs. A batch size of 100 was used.
The number of epochs during training was found empirically
and typically depends on the quality of driving data. We also
observe that an important factor which affects the quality of
collected data is the availability of smooth turns.

D. Stability and Quality Criteria
Vision-based driving model’s prediction accuracy/error is

weakly correlated to the driving performance [2]. Hence, in
order to evaluate a model’s ability to drive at high speeds
in different and challenging situations on a track, we test
the model by running for five consecutive laps. During
different lap runs, the model has a high chance of running
into different and difficult situations that have not been seen
before during training. If the model can drive the full five laps
with zero collisions then we conclude that it demonstrates
generalizability of driving in different situations on a given
track.

Having successfully completed five laps, we measure the
average lap time over the five laps and further record if the

car goes beyond the track edge. These two criteria serve as
our measures of driving quality.

Criterion 1 Successful completion of 5 laps
Criterion 2 Average Lap Time (ALT)
Criterion 3 Going beyond the track edge line

TABLE II: Considered Stability and Quality Criteria

E. Results

Track 1 and Track 2 results are shown in Fig. 7 and
8, respectively. Empirically, the results demonstrate that the
amount of training data governs the maximum speed at which
the model will be able to drive in a stable manner.

Fig. 7: Track 1 Results

Fig. 8: Track 2 Results

Insight 1: Establishing direct relationship between the
amount of data and the maximum speed learned by the
model. As we add training data, the model is able to learn
higher and higher speeds until it approaches the constant
training speed. This relationship helps to address the data-
centric question of machine learning in this problem, which
is: When will adding more data help improve the model’s
performance, and when should we switch to a model-
centric view and explore different architectures to im-
prove performance?.

In Tables III and IV, 7 indicates that the model is going
beyond the edge line and 3 indicates otherwise. We note
that the maximum speed indicated in the tables can vary by



Fig. 6: Deep neural network used for learning steering and investigating successful data collection properties. This same network is used
for steering learning network when jointly learning steering and throttle.

±1.5 mph during a single lap run. The average lap times
provided in the tables can also vary by ±0.5 seconds.

Tables III and IV show that as we increase the number
of training laps, the maximum stable speed increases and
consequently the lap time of the model improves. Further, we
observe that the lap time can slightly improve for cases when
the added training set does not result in higher maximum
speed. The lap time here can be used as one measure of
quality of driving when two models are able to successfully
complete five laps. Another measure is our Edge Check. If the
quality of driving is poor, the car oscillates on track touching
the edge of track. This can be seen with 15 laps of data on
Track 1, where it is able to achieve 50 mph speed but has
poor driving quality. The driving quality is improved through
the iterative Learning methodology described in Section II-
B. We note that increasing the size of the training set by
training for more laps does not always lead to improvement
in performance, as the quality of training data added has a
significant impact. Due to undesired driving patterns in newly
collected training data, we observed in several occasions that
adding more data degrades the performance of the model.
Having an expert in the feedback loop is hence needed to
remove/correct the undesired driving patterns before retrain-
ing the model.

TABLE III: Track 1, 80 mph training results

Laps
Metric

Speed
(mph)

5
laps

ALT
(sec)

Edge

10 30 X 195.8 X
15 50 X 117.7 7

20 50 X 116.5 X
35 50 X 116.1 X
45 60 X 99.4 7

55 60 X 98.37 X
65 70 X 84.19 X

Insight 2: Training data with higher maximum speed
enables stable driving at lower speeds with less data.

We note that the frequency of data collection is fixed at
10 Hz, so if 10 laps of data are collected at 30 mph, 50 mph,
and 80 mph, then the number of data points collected at these
speeds are different as more images will be available for the
lower speeds. For example, the amount of data corresponding
to 10 laps at 50 mph is the same as that corresponding to 16

TABLE IV: Track 2, 60 mph training results

Laps
Metric

Speed
(mph)

5
laps

ALT
(sec)

Edge

5 10 X 839.5 X
10 30 X 278.2 X
15 40 X 211.4 7

20 40 X 209.9 X
25 50 X 158.1 7

40 50 X 158.8 X
50 60 X 142.4 X

laps at 80 mph. In Fig. 7 and 8, we observe a dominant
pattern - that does not hold only in few exceptions - of
being able to reach the lower speeds with less amount of
data when training at higher speeds. This pattern can be
extreme in some cases. For example, in Fig. 7, we see that
30 mph stable driving is achieved with 10 laps of training
data at 80 mph, and the same speed can only be achieved
when training at 30 mph via having 15 laps of training
data; noting that the amount of data corresponding to 15
laps at 30 mph is equivalent to that of 40 laps at 80 mph.
We are investigating these observations further with more
experiments at various speeds and on different tracks for
deeper insights and understanding.

IV. JOINT STEERING AND THROTTLE PREDICTION

The ability to make correct steering and throttle predic-
tions without feedback links decreases the response time of
the system, which is crucial for autonomous racing. This
architecture is an attempt towards achieving that goal.

Here, we demonstrate that throttle can be learned using
the convolutional layers from the trained steering model
without retraining. Only the subsequent fully connected
layers dedicated to throttle prediction have to be trained.
Also unlike the work in [17], we show that the throttle can
be learned without any LSTM layers, and unlike the work
in [11], without any speed feedback as well as without any
other feedback links (e.g., as in [3]).

A. Training Methodology

We divide the training methodology for learning steering
and throttle into two parts: 1. Training for steering prediction,
and then 2. Training for throttle prediction. An overview of
the procedure is shown in Algorithm 1.



Fig. 9: Two separate models for training steering and throttle

1) Training for Steering Prediction: The model shown in
Fig. 9(a) is used to learn steering. This network is the same
as the one shown in Fig. 6. We train this model and improve
the performance iteratively using the Direct Policy Learning
methodology described in Section II-B.

2) Training for Throttle Prediction: For throttle training,
the trained convolutional layers from the steering model are
used. We freeze the learning of these convolutional layers,
which indicates that we are using the same convolutional
features as in the steering model to learn throttle. Different
fully connected layers are used for learning throttle and are
the only layers which are trained during throttle learning.
Fig. 9(b) represents the model used for throttle learning.

Algorithm 1: Training procedure for learning steer-
ing and throttle

Result: Steering and Throttle Predictive Model
while Criteria 1, 2, and 3 are not satisfied do

Get training data OR add more data
SteeringModel ← NewModel()
for epoch ≤ TotalEpochs do

trainSteering()
end
saveTrainedModel()
ThrottleModel ← NewModel()
ThrottleConvLayers ← SteeringConvLayers
for epoch ≤ TotalEpochs do

trainThrottle()
end
saveTrainedModel()
MergeBothModels()
EvaluatePerformanceOnTrack()

end

3) Equivalent Full Model: We note that when testing
the model’s performance, conceptually, the equivalent final
architecture consists of a combination of both networks

shown in Fig. 9(a) and 9(b) into one as shown in Fig. 10.
Since the convolutional layer weights are the same, these
convolutional layers become the common backbone of the
full network. However, we note that training this architecture
takes place in two stages as outlined above.

Fig. 10: Merged Deep Neural Network architecture for joint pre-
diction of steering and throttle

B. Results

We show results for Track 2, which has sharp turns,
to demonstrate the model’s ability to control steering and
throttle under challenging situations. An additional Lake
Track, which is the default track provided in the Udacity
simulator, is also used to demonstrate that this neural network
architecture and training methodology can be successfully
applied to different tracks. At the time of writing this draft,
the training and testing process was in progress for the IMS-
like Track 1, and the results will be included in future work.

1) Track 2: We provide a video demonstration on Track
22. The video shows the ability of the considered deep neural
network shown in Fig. 10 to successfully control steering and
throttle. In particular, the model learns to reduce throttle at
turns to achieve needed stability and reaches full throttle in
straight stretches to achieve a maximum speed of 90 mph.

2) Lake Track: We also provide a video demonstration on
the Lake Track3.

V. CONCLUSION

In this work, we explored significant challenges related to
applying deep-learning-based end-to-end learning solutions
for autonomous racing. First, with a data-centric perspec-
tive, we explored properties of successful data collection
strategies with an emphasis on the maximum reachable
speed via stable driving. We demonstrated the details of the

2Available at https://youtu.be/On0RhWkMLW4
3Available at https://youtu.be/ChaoakkGMgs



data collection process while highlighting the importance of
diversity and the amount of data. Important insights were
drawn, specifically capturing the relationship between the
amount of driving data, in terms of number of training
laps, and the model’s performance in terms of the maximum
achievable speed via stable driving. We used two different
tracks for that first study, one similar to the Indy Motor
Speedway (IMS), and another with sharp turns. Our second
contribution outlined how to jointly learn steering and throttle
without feedback links or recurrence (LSTM) in the deep
neural network architecture. We demonstrated the success
of the proposed deep learning algorithm for joint steering
and throttle prediction through the track with sharp turns
as well as the Udacity simulator’s default Lake Track.
The relationship between maximum training speed and the
model’s steering and throttle prediction performance will be
further analyzed in future work.
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