
Game-Theoretic Model Predictive Control with Data-Driven
Identification of Vehicle Model for Head-to-Head Autonomous Racing

Chanyoung Jung1, Seungwook Lee1, Hyunki Seong1, Andrea Finazzi2 and David Hyunchul Shim1

Abstract— Resolving edge-cases in autonomous driving, head-
to-head autonomous racing is getting a lot of attention from
the industry and academia. In this study, we propose a game-
theoretic model predictive control (MPC) approach for head-to-
head autonomous racing and data-driven model identification
method. For the practical estimation of nonlinear model pa-
rameters, we adopted the hyperband algorithm, which is used
for neural model training in machine learning. The proposed
controller comprises three modules: 1) game-based opponents’
trajectory predictor, 2) high-level race strategy planner, and
3) MPC-based low-level controller. The game-based predictor
was designed to predict the future trajectories of competitors.
Based on the prediction results, the high-level race strategy
planner plans several behaviors to respond to various race
circumstances. Finally, the MPC-based controller computes
the optimal control commands to follow the trajectories. The
proposed approach was validated under various racing cir-
cumstances in an official simulator of the Indy Autonomous
Challenge. The experimental results show that the proposed
method can effectively overtake competitors, while driving
through the track as quickly as possible without collisions.

I. INTRODUCTION

Recently, prominent races related to autonomous driving
have been actively organized to solve real-world problems
in “edge case” scenarios beyond the autonomous driving
technology in general situations, such as Roborace [1],
Indy Autonomous Challenge [2], and DARPA-RACER [3].
Autonomous racing can be divided into three categories: 1)
time trial, 2) 1:1 racing, and 3) head-to-head autonomous
racing, and all three types of racing are driven by limits of
handling; however, head-to-head autonomous racing, where
there is more than one opponent, presents more technical
difficulties. In this study, we focused on head-to-head au-
tonomous racing.

The MPC framework, which finds the optimal control
commands based on the system model, while satisfying a
set of constraints, is the most widely used controller for
high-speed autonomous driving. In [4], they formulated the
objective function of MPC which aims to maximize the
progress along the reference path by integrating a non-linear
vehicle model for time trial racing. In [5], they proposed a
model predictive contouring control (MPCC) approach that
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can follow the reference path and avoid stationary obstacles.
They demonstrated the real-time capability of the proposed
method through real-world experiments using a 1:43 scale
vehicle. However, most of the existing studies have focused
mainly on the MPC formulation based on the assumption that
the vehicle and tire model parameters are known in advance.

Unlike time trials, head-to-head racing players should be
able to predict future trajectories that reflect the intentions
and strategies of other opponents and drive through the
track as quickly as possible, while balancing safety and
aggressiveness. In [6], an MPC that can overtake the other
competitors was proposed. The MPC objective function
incorporates the euclidean distance between the ego-vehicle
and the opponents, penalizing collision-prone trajectories.
The authors of [7] proposed a game-theoretic planner for
overtaking in a two-car racing scenario. They used an iter-
ative best response algorithm (IBR) that seeks for the Nash
equilibrium within the joint trajectory of the two vehicles.
Similarly, in [8], a game-theoretic approach was proposed to
model racing as a non-cooperative non-zero-sum game, while
assuming open-loop information structures. Although various
approaches have been suggested for autonomous racing with
others, head-to-head racing remains challenging, and much
work remains to be done.

Herein, we present the Stackelberg game-theoretic MPC
for head-to-head autonomous racing, along with a data-
driven optimization-based approach to identify the system
model parameters that underlie MPC. Specifically, for model
identification, we applied the hyperband algorithm, which is
a widely used practical approach in neural model learning.
With the obtained models, we designed a race-oriented
controller, which can respond to various race circumstances
without collision with surrounding vehicles. Our proposed
controller comprises three modules: 1) Stackelberg game-
based opponents’ trajectory predictor, 2) high-level race
strategy planner, and 3) MPC-based low-level controller.
Finally, the proposed method was verified based on a head-
to-head racing scenario in a realistic vehicle simulator.

II. MODEL IDENTIFICATION USING HYPERBAND
ALGORITHM

For MPC-based vehicle control, highly nonlinear model
parameters are required. The inaccuracy in the parameters
can result in model error and it is propagated over the MPC
horizon. Consequently, this reduces the prediction accuracy
of MPC and lowers the optimality of the solution. Further-
more, finding the correct model parameters is challenging
and requires many heuristic search processes.



Fig. 1: Overview of the proposed approach for head-to-head autonomous racing.

To address this challenging but practical issue, we adopted
a hyperparameter optimization scheme to find the system
model parameters in a data-driven approach, which is widely
used in the field of machine learning. Specifically, we used
the hyperband [9] algorithm to obtain the parameters of a
simplified Pacejka tire model [10] for vehicle dynamics. The
hyperband algorithm is a variation of random search, but with
some explore-exploit theory to find the best hyperparameters
for each configuration based on an evaluation loss. It defines
budget B, which is the total number of epochs required
to find the hyperparameter configuration. B determines the
number of samples and the number of iterations spent on
each sampled configuration. Comparing the evaluation loss
for each sampled configuration, hyperband excludes the
configuration with a large loss and allocates more budget
for the configuration with a low loss. It repeats this process
until the optimal configuration is chosen. To handle the local
minimum problem, we apply Gaussian mutation process
[11]. New parameter configurations can be generated by
injecting Gaussian noise to the selected configurations, and
this increases the likelihood of finding a well-fitted solution
with a lower evaluation loss.

Algorithm 1 summarizes the aforementioned parameter
search process, where R is the maximum budget amount and
η is an input that controls the proportion of the discarded
configurations. For parameter optimization, we define the
following three functions in the hyperband.

• get hyperparameter configuration(n): a function that
returns a set of n hyperparameter configurations from
normal distribution defined over the configuration space.

• mutate then return eval loss(t,ri): a function that re-
ceives a hyperparameter configuration t and a resource
(budget) allocation r as arguments and returns the
evaluation loss after mutating the configuration for the
allocated resources.

• select top k configuration(T,L,bni/ηc): a function that
receives a set of hyperparameter configurations T and
their corresponding evaluation losses L and returns the
top k performing configurations.

Algorithm 1 Hyperband algorithm for model identification
parameter search
Input: R,η (default η = 3)

1: smax← blogη(R)c,B = (smax +1)R
2: for s ∈ {smax,smax−1, ...,0} do
3: n = dB

R
ηs

(s+1)e,r = Rη−s

4: T = get hyperparameter configuration(n)
5: for i ∈ {0, ...,s} do
6: ni = bnη−ic
7: ri = rη i

8: L = {mutate then return eval loss(t,ri) : t ∈ T}
9: T = select top k configuration(T,L,bni/ηc)

Output: Configuration with the smallest loss L

III. GAME-THEORETIC MODEL PREDICTIVE
CONTROLLER

A. Overall Structure

The proposed game-theoretic MPC is designed to infer
the optimal control command to drive through the track
as quickly as possible without collision with surrounding
opponents in a head-to-head racing scenario. The proposed
controller is composed of three modules: 1) game-based op-
ponents’ trajectory predictor, 2) high-level race strategy plan-
ner, and 3) MPC-based low-level controller. The predictor
establishes a two-player game between surrounding vehicles
based on the perception results and solves them sequentially
to set the future trajectory of the surrounding vehicles. At
this time, we assumed that all the vehicle dynamics are same,
and the payoff, the main gradient of the game, was shared
as an objective function of the MPC. Based on the predicted
trajectories, the racing strategy planner selects the strategies
according to the predefined race mode (position-keeping
or overtaking), balancing between aggressiveness and con-
servativeness. Finally, the MPC-based low-level controller
is responsible for generating the optimal control command
along the race strategy. The overall structure of our approach
is shown in Fig. 1.



Fig. 2: Visualization of the structure of the proposed Stack-
elberg game implementation. A two-player game (leader vs.
follower) is turned into an n-player game by recursively
stacking the leader’s trajectories.

B. Extend Stackelberg Game to N-Player Game

The Stackelberg game is a simple two-player sequential
game played by a leader and a follower. In this game, the
leader first commits his strategy, and the follower observes
the leader’s strategy and responds to it while both are trying
to maximize their own payoff.

To extend the two-player game to an n-player game,
we sequentially establish independent Stackelberg games
between the surrounding vehicles. Starting from the leading
one, we solve each game recursively, as shown in Fig. 2. In
each game, we assumed that two vehicles are trying to max-
imize their own progress, whereas only the follower takes
into account the collision. Therefore, each player’s payoff
function can be formulated as the objective function of MPC,
as described in Section III-C. The output of each game (one
trajectory for each player) is passed to consecutive games and
set as additional leader strategies. To keep the computational
load acceptable, we only considered the vehicles within a
100 m range from the ego-vehicle.

C. MPC-based Low-level Controller and High-level Race
Strategy Planner

This section begins with the vehicle dynamics model used
in this study, and the path-following MPC problem is for-
mulated. Subsequently, it represents the detailed contents of
the MPC-based low-level controller and high-level strategy
planner for head-to-head autonomous racing.

1) Vehicle Model: The vehicle was modeled using a
dynamic bicycle model [12]. For the sake of simplicity,
the vehicle was modeled as a single rigid body expressed
by mass m and inertia Iz. In the bicycle model, lateral
tire forces FF,y and FR,y were applied at the front and rear
wheels, respectively. Our race vehicle was a rear-wheel drive;
therefore, the longitudinal tire force FR,x was applied only
at the rear wheel. The pitch, roll, and vertical dynamics
were ignored, and only the motion on a flat surface was
considered. The resulting vehicle dynamics are shown in Fig.
3, and the equation of the dynamics is given in Equation 1.

Fig. 3: Schematic of vehicle dynamics model (a) in the yaw
and (b) roll planes.
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1
Iz
(FF,ylF cosδ −FR,ylR)

 , (1)

where X , Y and ψ are the position and orientation in a global
coordinate, respectively. vx, vy and r are the longitudinal,
lateral velocities and yaw rate, respectively. lF and lR are
the distances from the center of gravity to the front and
rear wheels, respectively. The model is represented by the 6-
dimensional state x = [X ,Y,ψ,vx,vy,r]T and 2-dimensional
input u = [δ ,D]T , where δ and D are the steering angle
and throttle command, respectively. Note that the braking
command is included in the negative range of the D term.

The tire forces are represented by the simplified Pacejka
tire model,

αF = arctan
vy + lF r

vx
−δ ,

αR = arctan
vy− lRr

vx
,

Fi,y = Di sinCi arctanBiαi, i ∈ {F,R},
FR,x =CmD−Cr−Cdv2

x

(2)

where Bi,Ci,Di, i∈ {F,R},Cm are tire parameters, and αi, i∈
{F,R} are the front and rear slip angles, respectively. The
tire parameters were identified as described in Section III-
C.1, while the rolling resistance, Cr, was identified from the
experiments. In addition, we incorporated the wake effect of
the leading vehicle [13]. We used an adaptive drag parameter
Cd , to exploit drafting effect.



2) Model Predictive Contouring Control: Motivated by
[5], we adapted a MPCC scheme that accomplishes the path-
following task of a vehicle in an optimal fashion via MPC.
The typical MPC problem can be stated as follows:

min
U

J (3a)

s.t xk+1 = f(xk,uk), k = 0, ...,N−1 (3b)
xk ∈XC ,uk ∈UC (3c)
xN ∈XC N (3d)
x0 = x(t0) (3e)

where J is the cost function, U= {u0, ...,uN−1} is the control
sequence (i.e. the optimization variable), XC and UC are
safe set for state and control, XC N is the terminal safe set,
xN is the terminal state and x0 is the state x at the time
of measurement t0. The safe sets are decided based on the
constraints at each time step.

By extending the typical MPC problem presented above,
MPCC is an algorithm that enables the vehicle to follow the
path by adding the contouring cost Q and control quality
cost R into the cost function. Following the definitions and
notations in [5], Q and R are formulated as follows:

Q(xk) = qcê2
c,k +ql ê2

l,k− γvθ ,k. (4)

R(uk,∆uk) = uT
k Ruuk +∆uT

k R∆u∆uk, (5)

where êc,k is the contouring error, êl,k is the lag error, vθ ,k is
the speed at time step k with respect to the reference path,
and qc, ql , and γ are their corresponding weights.

Unlike previous studies, we directly used the future trajec-
tories of surrounding vehicles predicted through the game-
based predictor as soft constraints of the MPCC. Through
this, we could avoid collisions not only with static obstacles
but also with various adjacent vehicles racing with their own
strategies. However, in the racing scenario, because it is a
non-cooperative game, errors in predicting the opponent’s
driving trajectory cannot be avoided. The prediction error is
generated from the uncertainty in the opponent’s state esti-
mation, vehicle model, and control law. Here, we assumed
that the combined uncertainty, σ , can be approximated as
a normal distribution N (0,diag(σ)) following the indepen-
dent and identically distributed conditions. Thus, we define
the constraint in a finite horizon with a confidence interval
pt as follows:

d(xop,k,xk)> ptσ , ∀k = 0, ...N, (6)

where the distance function d is the Euclidean distance from
ego position (xk,yk) corresponding to xk, to the predicted
opponent position (xop,k, yop,k) corresponding to xop,k, and
pt is the decreasing confidence interval defined for every
time step.

The final MPCC formulation of our proposed controller

Fig. 4: Two different planner’s outcomes in position-keeping
mode (solid blue) and overtaking mode (dashed blue) based
on the same trajectory prediction (solid orange).

with constraints can be rewritten as follows:

min
U

N

∑
k=0

Q(xk)+R(uk,∆uk) (7a)

s.t xk+1 = f(xk,uk), k = 0, ...,N−1 (7b)
x0 = x(t0) (7c)
umin ≤ uk ≤ umax (7d)
∆umin ≤ ∆uk ≤ ∆umax (7e)

(xk− xre f ,k)
2 +(yk− yre f ,k)

2 ≤ R2
track (7f)

d(xop,k,xk)> ptσ . (7g)

3) High-Level Race Strategy Planner: Professional hu-
man drivers have the ability to respond to various race
circumstances while balancing their driving aggressiveness
and conservativeness. To implement these racing behaviors
in our controller, we hierarchically added a high-level race
strategy planner before the MPCC-based low-level controller.
The race strategy planner is responsible for planning the
race-oriented strategies of the ego-vehicle using various
configurations of the MPC controller. We used the MPC
solution also in the trajectory planner implementation, with
the objective function equal to (7a). We designed two distinct
modes within the planner: position-keeping and overtaking.
In the position-keeping mode, the contouring cost weight qc
was set to large values so that the ego-vehicle tightly fol-
lows the reference path while maximizing the aero-drafting
advantage at the rear of the preceding vehicle. By contrast,
the overtaking mode was configured such that the vehicle’s
progress is maximized by setting the speed cost weight, γ ,
to a large value. The two modes are selectively utilized, and
the criterion for selecting the overtaking mode is whether
the progress in the terminal state exceeds a certain threshold
(here, we set the threshold as 3 m) compared to the predicted
progress of the competitor. Fig 4 shows the difference in
strategy between the two modes.

IV. EXPERIMENTS

A. Experimental Design

We used the Ansys VRXPERIENCE driving simulator,
the official software of the Indy Autonomous Challenge, as
shown in Fig. 5. We created a head-to-head racing scenario



Fig. 5: Top view of the Indianapolis Motor Speedway (IMS)
modeled in the Ansys VRXPERIENCE driving simulator.

with four identical vehicles in a rolling start setting and
the ego-vehicle placed last in the group. Here, we set the
planning horizon to 1 s, and the top speed of the vehicle
was limited to 300 km/h. The position and speed of the
surrounding vehicles were detected by a radar provided by
the simulator. To make the experiments more realistic, we
added random noise to the perception result, intentionally
introducing error in the predicted trajectories.

To verify our proposed approach, we conducted the fol-
lowing case studies:
• Case 1) With and without the proposed high-level race

strategy planner: This study was conducted in the curved
segment of the track.

• Case 2) Replace the game-based predictor with the
extended Kalman filter (EKF) method: This study was
conducted in the straight segment of the track. For the
EKF method, we assumed that the acceleration and
heading did not change during the prediction.

B. Simulation Results

Fig. 6 shows the experimental results of case 1. The first
row of Fig. 6 shows the trajectories of the ego and the
preceding vehicles over time in a curved segment of the
track. Without the race strategy planner (first row, right), the
control commands were directly calculated from the MPC
based low-level controller. Here, the ego-vehicle attempted
to overtake the opponent to the right side at t=10. However,
the throttle was released to satisfy the vehicle dynamics
constraints and, accordingly, the vehicle speed decreased
while the preceding vehicle ran at a constant acceleration.
Because of the increased travel distance and reduced speed,
the distance gap between the ego and the opponent increased.
After that, the ego-vehicle returned to the reference path to
reduce contouring error and maximize its progress. On the
other hand, with the race strategy planner (first row, left),
the ego-vehicle was driven in position-keeping mode by the
planner. In this case, the ego-vehicle could accelerate more
using the aero drafting advantage, but the acceleration was
not enough to overtake the other. Therefore, the ego-vehicle
kept the reference path driving close to the opponent and
releasing the throttle, where necessary. Although there was
no overtaking in both cases, there was a huge difference in

Fig. 6: Simulation results in case 1.

TABLE I: Single lap simulation results.

Predictor
type

High-level race
strategy planner

Collision
occurred

time (sec)

# of
overtaking

Single
lap time

(sec)
EKF W/O t = 7.3 - DNF
EKF W/ t = 8.8 - DNF
Game
based W/O - 0 53.135

Game
based W/ - 1 52.051

terms of driving speed, as shown in the second row of Fig.
6.

Next, Fig. 7 presents the experimental results for case 2,
which show the effectiveness of the proposed game-based
predictor. We conducted experiments at the beginning of the
race, where there are many interactions with competitors.
Also, opponents’ initial speed and ours were set to 100
km/h and 110 km/h, respectively. The first and the second
rows of Fig. 7 show the results of the proposed predictor
in action. Here, the ego-vehicle drove to the right side
of the track until t=5 to reduce the contouring error with
its reference path. After t=5, the ego-vehicle reacted to
the predicted competitors’ trajectories and drove to the left
side of the track, aiming to avoid the collision without
braking maneuver. On the other hand, when the EKF was
applied as a predictor (third and fourth rows of Fig. 7),
a collision occurred around t=5. This result clearly shows
the effectiveness of our approach, that has the advantage
of predicting the opponents’ future trajectories based on the
interaction between them.

Single lap simulation results are listed in Table I. When
EKF was used as trajectory predictor, collisions occurred
regardless of the presence or absence of a high-level race
strategy planner, and the lap time was measured as do not
finish (DNF). On the other hand, when the proposed game-
based opponents’ trajectory predictor was used, collision had
not occurred in all cases. Furthermore, when a high-level race
strategy planner was used with this predictor, 1.1 sec of lap
time gain was observed.



Fig. 7: Simulation results in case 2.

V. CONCLUSIONS
In this study, we introduced a game-theoretic MPC for

head-to-head autonomous racing and a data-driven approach
for model identification. For model identification, we ex-
plored the parameters of the highly non-linear tire model
from the driving data by applying the hyperband algorithm,
widely used in the machine learning field. The proposed
game-theoretic MPC comprises three modules: 1) Stackel-
berg game-based opponents’ trajectory predictor, 2) high-
level race strategy planner, and 3) MPC-based low-level
controller. The performance of the proposed method was
demonstrated based on various scenarios in a highly real-
istic racing simulator. The experimental results showed that
the proposed approach drives as quickly as possible while
avoiding collision in a head-to-head racing situation.

We plan to expand the results of this study by adding
the strategic blocking mode in the high-level race strategy
planner and reinforcement learning based head-to-head au-
tonomous driving.
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